
1

Unit – I

Cryptography and Network Security

Definition of Computer Security:

 The NIST Computer Security Handbook [NIST95] defines the term computer security as

follows:

Computer Security: The protection afforded to an automated information system in order to

attain the applicable objectives of preserving the integrity, availability, and confidentiality of

information system resources (includes hardware, software, firmware, information/data, and

telecommunications).

This definition introduces three key objectives that are at the heart of computer security:

Confidentiality: This term covers two related concepts:

Data confidentiality: Assures that private or confidential information is not made available or

disclosed to unauthorized individuals.

Privacy: Assures that individuals control or influence what information related to them may be

collected and stored and by whom and to whom that information may be disclosed.

 • Integrity: This term covers two related concepts:

Data integrity: Assures that information and programs are changed only in a specified and

authorized manner.

System integrity: Assures that a system performs its intended function in an unimpaired manner,

free from deliberate or inadvertent unauthorized manipulation of the system.

• Availability: Assures that systems work promptly and service is not denied to authorized users.

These three concepts form what is often referred to as the CIA triad.

The three concepts embody the fundamental security objectives for both data and for information

and computing services.

For example, the NIST standard FIPS 199 (Standards for Security Categorization of Federal

Information and Information Systems) lists confidentiality, integrity, and availability as the three

security objectives for information and for information systems.

 FIPS 199 provides a useful characterization of these three objectives in terms of requirements

and the definition of a loss of security in each category:

 • Confidentiality: Preserving authorized restrictions on information access and disclosure,

including means for protecting personal privacy and proprietary information. A loss of

2

confidentiality is the unauthorized disclosure of information.

• Integrity: Guarding against improper information modification or destruction, including

ensuring information nonrepudiation and authenticity. A loss of integrity is the unauthorized

modification or destruction of information.

• Availability: Ensuring timely and reliable access to and use of information. A loss of

availability is the disruption of access to or use of information or an information system

The Challenges of Computer Security Computer and network security is both fascinating and complex.
Some of the reasons follow:

1. Security is not as simple as it might first appear to the novice. The requirements seem to be

straightforward; indeed, most of the major requirements for security services can be given self-
explanatory, one-word labels: confidentiality, authentication, nonrepudiation, or integrity. But the

mechanisms used to meet those requirements can be quite complex, and understanding them may involve

rather subtle reasoning.

2. In developing a particular security mechanism or algorithm, one must always consider potential attacks
on those security features. In many cases, successful attacks are designed by looking at the problem in a

completely different way, therefore exploiting an unexpected weakness in the mechanism.

3. Because of point 2, the procedures used to provide particular services are often counterintuitive.

Typically, a security mechanism is complex, and it is not obvious from the statement of a particular
requirement that such elaborate measures are needed. It is only when the various aspects of the threat are

considered that elaborate security mechanisms make sense.

4. Having designed various security mechanisms, it is necessary to decide where to use them. This is true
both in terms of physical placement (e.g., at what points in a network are certain security mechanisms

needed) and in a logical sense (e.g., at what layer or layers of an architecture such as TCP/IP

[Transmission Control Protocol/Internet Protocol] should mechanisms be placed).

5. Security mechanisms typically involve more than a particular algorithm or protocol. They also require
that participants be in possession of some secret information (e.g., an encryption key), which raises

questions about the creation, distribution, and protection of that secret information. There also may be a

reliance on communications protocols whose behavior may complicate the task of developing the security
mechanism.

6. Computer and network security is essentially a battle of wits between a peropetrator who tries to find

holes and the designer or administrator who tries to close them. The great advantage that the attacker has

is that he or she need only find a single weakness, while the designer must find and eliminate all
weaknesses to achieve perfect security.

7. There is a natural tendency on the part of users and system managers to perceive little benefit from

security investment until a security failure occurs.

8. Security requires regular, even constant, monitoring, and this is difficult in today’s short-term,
overloaded environment.

9. Security is still too often an afterthought to be incorporated into a system after the design is complete

3

rather than being an integral part of the design process.

10. Many users and even security administrators view strong security as an impediment to efficient and

user-friendly operation of an information system or use of information

1.1. THE OSI SECURITY ARCHITECTURE

The OSI security architecture focuses on security attacks, mechanisms, and services. These can

be defined briefly as follows:

➢ Security attack: Any action that compromises the security of information owned by an
organization.

➢ Security mechanism: A process (or a device incorporating such a process) that is
designed to detect, prevent, or recover from a security attack.

➢ Security service: A processing or communication service that enhances the security of
the data processing systems and the information transfers of an organization.

➢

1.2. SECURITY ATTACKS

A useful means of classifying security attacks, is in terms of passive attacks and active attacks.

A passive attack attempts to learn or make use of information from the system but does not affect

system resources. An active attack attempts to alter system resources or affect their operation.

PASSIVE ATTACKS

Passive attacks are in the nature of eavesdropping on, or monitoring of, transmissions. The goal

of the opponent is to obtain information that is being transmitted.

Two types of passive attacks are release of message contents and traffic analysis.

The release of message contents is easily understood (Figure 1.1a). A telephone conversation, an

electronic mail message, and a transferred file may contain sensitive or confidential information.

We would like to prevent an opponent from learning the contents of these transmissions.

4

Figure 1.1. Passive Attacks

A second type of passive attack, traffic analysis, is subtler (Figure 1.1b). Suppose that we had a

way of masking the contents of messages or other information traffic so that opponents, even if

they captured the message, could not extract the information from the message. The common

technique for masking contents is encryption. If we had encryption protection in place, an

opponent might still be able to observe the pattern of these messages. The opponent could

determine the location and identity of communicating hosts and could observe the frequency and

length of messages being exchanged.

Passive attacks are very difficult to detect because they do not involve any alteration of the data.

Typically, the message traffic is not sent and received in an apparently normal fashion and the

sender nor receiver is aware that a third party has read the messages or observed the traffic

pattern.

ACTIVE ATTACKS

Active attacks involve some modification of the data stream or the creation of a false stream and

can be subdivided into four categories: masquerade, replay, modification of messages, and

denial of service.

A masquerade takes place when one entity pretends to be a different entity (Figure 1.2a). A

masquerade attack usually includes one of the other forms of active attack. For example,

authentication sequences can be captured and replayed after a valid authentication sequence has

taken place, thus enabling an authorized entity with few privileges to obtain extra privileges by

impersonating an entity that has those privileges.

5

Replay involves the passive capture of a data unit and its subsequent retransmission to produce

an unauthorized effect (Figure 1.2b).

Modification of messages simply means that some portion of a legitimate message is altered, or

that messages are delayed or reordered, to produce an unauthorized effect (Figure 1.2c). For

example, a message meaning "Allow John Smith to read confidential file accounts" is modified

to mean "Allow Fred Brown to read confidential file accounts."

The denial of service prevents or inhibits the normal use or management of communications

facilities (Figure 1.2d). This attack may have a specific target; for example, an entity may

suppress all messages directed to a particular destination (e.g., the security audit service).

Another form of service denial is the disruption of an entire network, either by disabling the

network or by overloading it with messages so as to degrade performance.

6

Figure 1.2. Active Attacks

1.3. SECURITY SERVICES
AUTHENTICATION

The assurance that the communicating entity is the one that it claims to be.

Peer Entity Authentication

Used in association with a logical connection to provide confidence in the identity of the entities

connected.

Data Origin Authentication

In a connectionless transfer, provides assurance that the source of received data is as claimed.

ACCESS CONTROL

The prevention of unauthorized use of a resource (i.e., this service controls who can have access

to a resource, under what conditions access can occur, and what those accessing the resource are

allowed to do).

DATA CONFIDENTIALITY

The protection of data from unauthorized disclosure.

Connection Confidentiality

The protection of all user data on a connection.

Connectionless Confidentiality

The protection of all user data in a single data block

7

Selective-Field Confidentiality

The confidentiality of selected fields within the user data on a connection or in a single data

block.

Traffic Flow Confidentiality

The protection of the information that might be derived from observation of traffic flows.

DATA INTEGRITY

The assurance that data received are exactly as sent by an authorized entity (i.e., contain no

modification, insertion, deletion, or replay).

Connection Integrity with Recovery

Provides for the integrity of all user data on a connection and detects any modification, insertion,

deletion, or replay of any data within an entire data sequence, with recovery attempted.

Connection Integrity without Recovery

As above, but provides only detection without recovery.

Selective-Field Connection Integrity

Provides for the integrity of selected fields within the user data of a data block transferred over a

connection and takes the form of determination of whether the selected fields have been

modified, inserted, deleted, or replayed.

Connectionless Integrity

Provides for the integrity of a single connectionless data block and may take the form of

detection of data modification. Additionally, a limited form of replay detection may be provided.

Selective-Field Connectionless Integrity

Provides for the integrity of selected fields within a single connectionless data block; takes the

form of determination of whether the selected fields have been modified.

NONREPUDIATION

Provides protection against denial by one of the entities involved in a communication of having

participated in all or part of the communication.

Nonrepudiation, Origin

Proof that the message was sent by the specified party.

Nonrepudiation, Destination

Proof that the message was received by the specified party.

AUTHENTICATION

The authentication service is concerned with assuring that a communication is authentic. In the

case of a single message, such as a warning or alarm signal, the function of the authentication

service is to assure the recipient that the message is from the source that it claims to be from. In

the case of an ongoing interaction, such as the connection of a terminal to a host, two aspects are

involved. First, at the time of connection initiation, the service assures that the two entities are

authentic, that is, that each is the entity that it claims to be. Second, the service must assure that

the connection is not interfered with in such a way that a third party can masquerade as one of

the two legitimate parties for the purposes of unauthorized transmission or reception.

Two specific authentication services are defined in X.800:

Peer entity authentication: Provides for the corroboration of the identity of a peer entity in an

association. It is provided for use at the establishment of, or at times during the data transfer

phase of, a connection. It attempts to provide confidence that an entity is not performing either

a masquerade or an unauthorized replay of a previous connection.

Data origin authentication: Provides for the corroboration of the source of a data unit. It does

8

not provide protection against the duplication or modification of data units. This type of service

supports applications like electronic mail where there are no prior interactions between the

communicating entities.

ACCESS CONTROL

In the context of network security, access control is the ability to limit and control the access to

host systems and applications via communications links. To achieve this, each entity trying to

gain access must first be identified, or authenticated, so that access rights can be tailored to the

individual.

DATA CONFIDENTIALITY

Confidentiality is the protection of transmitted data from passive attacks. With respect to the

content of a data transmission, several levels of protection can be identified. The broadest service

protects all user data transmitted between two users over a period of time. For example, when a

TCP connection is set up between two systems, this broad protection prevents the release of any

user data transmitted over the TCP connection. Narrower forms of this service can also be

defined, including the protection of a single message or even specific fields within a message.

These refinements are less useful than the broad approach and may even be more complex and

expensive to implement. The other aspect of confidentiality is the protection of traffic flow from

analysis. This requires that an attacker not be able to observe the source and destination,

frequency, length, or other characteristics of the traffic on a communications facility.

DATA INTEGRITY

As with confidentiality, integrity can apply to a stream of messages, a single message, or selected

fields within a message. Again, the most useful and straightforward approach is total stream

protection.

A connection-oriented integrity service, one that deals with a stream of messages, assures that

messages are received as sent, with no duplication, insertion, modification, reordering, or

replays. The destruction of data is also covered under this service. Thus, the connection-oriented

integrity service addresses both message stream modification and denial of service. On the other

hand, a connectionless integrity service, one that deals with individual messages without regard

to any larger context, ge nerallyprovides protection against message modification only.

We can make a distinction between the service with and without recovery. Because the integrity

service relates to active attacks, we are concerned with detection rather than prevention. If a

violation of integrity is detected, then the service may simply report this violation, and some

other portion of software or human intervention is required to recover from the violation.

Alternatively, there are mechanisms available to recover from the loss of integrity of data, as we

will review subsequently. The incorporation of automated recovery mechanisms is, in general,

the more attractive alternative.

NONREPUDIATION

Nonrepudiation prevents either sender or receiver from denying a transmitted message. Thus,

when a message is sent, the receiver can prove that the alleged sender in fact sent the message.

Similarly, when a message is received, the sender can prove that the alleged receiver in fact

received the message.

1.4. SECURITY MECHANISMS
There are two types of security Mechanisms 1. Specific Security Mechanisms 2. Pervasive

Security Mechanisms

SPECIFIC SECURITY MECHANISMS

9

May be incorporated into the appropriate protocol layer in order to provide some of the OSI

security services.

Encipherment

The use of mathematical algorithms to transform data into a form that is not readily intelligible.

The transformation and subsequent recovery of the data depend on an algorithm and zero or

more encryption keys.

Digital Signature

Data appended to, or a cryptographic transformation of, a data unit that allows a recipient of the

data unit to prove the source and integrity of the data unit and protect against forgery (e.g., by the

recipient).

Access Control

A variety of mechanisms that enforce access rights to resources.

Data Integrity

A variety of mechanisms used to assure the integrity of a data unit or stream of data units.

Authentication Exchange

A mechanism intended to ensure the identity of an entity by means of information exchange.

Traffic Padding

The insertion of bits into gaps in a data stream to frustrate traffic analysis attempts.

Routing Control

Enables selection of particular physically secure routes for certain data and allows routing

changes, especially when a breach of security is suspected.

Notarization

The use of a trusted third party to assure certain properties of a data exchange.

PERVASIVE SECURITY MECHANISMS

Mechanisms that are not specific to any particular OSI security service or protocol layer.

Trusted Functionality

That which is perceived to be correct with respect to some criteria (e.g., as established by a

security policy).

Security Label

The marking bound to a resource (which may be a data unit) that names or designates the

security attributes of that resource.

Event Detection

Detection of security-relevant events.

Security Audit Trail

Data collected and potentially used to facilitate a security audit, which is an independent review

and examination of system records and activities.

Security Recovery

Deals with requests from mechanisms, such as event handling and management functions, and

takes recovery actions.

1.5. A Model for Network Security
A model for much of what we will be discussing is captured, in very general terms, in Figure 1.3.

A message is to be transferred from one party to another across some sort of internet. The two

parties, who are the principals in this transaction, must cooperate for the exchange to take place.

A logical information channel is established by defining a route through the internet from source

10

to destination and by the cooperative use of communication protocols (e.g., TCP/IP) by the two

principals.

Figure 1.3. Model for Network Security

Security aspects come into play when it is necessary or desirable to protect the information

transmission from an opponent who may present a threat to confidentiality, authenticity, and so

on. All the techniques for providing security have two components:

➢ A security-related transformation on the information to be sent. Examples include the

encryption of the message, which scrambles the message so that it is unreadable by the

opponent, and the addition of a code based on the contents of the message, which can be
used to verify the identity of the sender

➢ Some secret information shared by the two principals and, it is hoped, unknown to the

opponent. An example is an encryption key used in conjunction with the transformation
to scramble the message before transmission and unscramble it on reception.

A trusted third party may be needed to achieve secure transmission. For example, a third party

may be responsible for distributing the secret information to the two principals while keeping it

from any opponent. Or a third party may be needed to arbitrate disputes between the two

principals concerning the authenticity of a message transmission.

This general model shows that there are four basic tasks in designing a particular security

service:

➢ Design an algorithm for performing the security-related transformation. The algorithm
should be such that an opponent cannot defeat its purpose.

➢ Generate the secret information to be used with the algorithm.

➢ Develop methods for the distribution and sharing of the secret information.
➢ Specify a protocol to be used by the two principals that makes use of the security

algorithm and the secret information to achieve a particular security service.

11

• Information access threats: Intercept or modify data on behalf of users who should not have access to

that data.

• Service threats: Exploit service flaws in computers to inhibit use by legitimate users

Viruses and worms are two examples of software attacks. Such attacks can be introduced into a system

by means of a disk that contains the unwanted logic concealed in otherwise useful software. They can

also be inserted into a system across a network; this latter mechanism is of more concern in network

security.

The security mechanisms needed to cope with unwanted access fall into two broad categories (see

Figure 1.3). The first category might be termed a gatekeeper function. It includes password-based

login procedures that are designed to deny access to all but authorized users and screening logic that is

designed to detect and reject worms, viruses, and other similar attacks. Once either an unwanted user

or unwanted software gains access, the second line of defense consists of a variety of internal controls

that monitor activity and analyze stored information in an attempt to detect the presence of unwanted

intruders.

1.6. CLASSICAL ENCRYPTION TECHNIQUES
➢ Symmetric encryption is a form of cryptosystem in which encryption and decryption are

performed using the same key. It is also known as conventional encryption.

➢ Symmetric encryption transforms plaintext into ciphertext using a secret key and an

encryption algorithm. Using the same key and a decryption algorithm, the plaintext is
recovered from the ciphertext.

➢ The two types of attack on an encryption algorithm are cryptanalysis, based on properties
of the encryption algorithm, and brute-force, which involves trying allpossible keys.

➢ Traditional (precomputer) symmetric ciphers use substitution and/or transposition

techniques. Substitution techniques map plaintext elements (characters, bits) into

ciphertext elements. Transposition techniques systematically transpose the positions of

plaintext elements.

➢ Rotor machines are sophisticated precomputer hardware devices that use substitution
techniques.

➢ Steganography is a technique for hiding a secret message within a larger one in such a
way that others cannot discern the presence or contents of the hidden message.

12

Before beginning, we define some terms. An original message is known as the plaintext, while

the coded message is called the ciphertext. The process of converting from plaintext to

ciphertext is known as enciphering or encryption; restoring the plaintext from the ciphertext is

deciphering or decryption. The many schemes used for encryption constitute the area of study

known as cryptography. Such a scheme is known as a cryptographic system or a cipher.

Techniques used for deciphering a message without any knowledge of the enciphering details

fall into the area of cryptanalysis. Cryptanalysis is what the layperson calls "breaking the code."

The areas of cryptography and cryptanalysis together are called cryptology.

1.7. SYMMETRIC CIPHER MODEL
A symmetric encryption scheme has five ingredients (Figure 1.4):

➢ Plaintext: This is the original intelligible message or data that is fed into the algorithm as

input.

➢ Encryption algorithm: The encryption algorithm performs various substitutions and

➢ transformations on the plaintext.
➢ Secret key: The secret key is also input to the encryption algorithm. The key is a value

independent of the plaintext and of the algorithm. The algorithm will produce a different

output depending on the specific key being used at the time. The exact substitutions and

transformations performed by the algorithm depend on the key.

➢ Ciphertext: This is the scrambled message produced as output. It depends on the

plaintext and the secret key. For a given message, two different keys will produce two

different ciphertexts. The ciphertext is an apparently random stream of data and, as it

stands, is unintelligible.

➢ Decryption algorithm: This is essentially the encryption algorithm run in reverse. It
takes the ciphertext and the secret key and produces the original plaintext.

13

Figure 1.4. Simplified Model of Conventional Encryption

There are two requirements for secure use of conventional encryption:

We need a strong encryption algorithm. At a minimum, we would like the algorithm to be

such that an opponent who knows the algorithm and has access to one or more ciphertexts would

be unable to decipher the ciphertext or figure out the key. This requirement is usually stated in a

stronger form: The opponent should be unable to decrypt ciphertext or discover the key even if

he or she is in possession of a number of ciphertexts together with the plaintext that produced

each ciphertext

Sender and receiver must have obtained copies of the secret key in a secure fashion and

must keep the key secure. If someone can discover the key and knows the algorithm, all

communication using this key is readable.

We assume that it is impractical to decrypt a message on the basis of the ciphertext plus

knowledge of the encryption/decryption algorithm. In other words, we do not need to keep the

algorithm secret; we need to keep only the key secret.

Let us take a closer look at the essential elements of a symmetric encryption scheme,

using Figure 1.5 .A source produces a message in plaintext, X = [X1, X2, ..., XM]. The M

elements of X are letters in some finite alphabet. Traditionally, the alphabet usually consisted of

the 26 capital letters. Nowadays, the binary alphabet {0, 1} is typically used. For encryption, a

key of the form K = [K1, K2, ..., KJ] is generated. If the key is generated at the message source,

then it must also be provided to the destination by means of some secure channel. Alternatively,

a third party could generate the key and securely deliver it to both source and destination.

14

Figure 1.5 Model of Conventional Cryptosystem

With the message X and the encryption key K as input, the encryption algorithm forms the

ciphertext Y = [Y1, Y2, ..., YN]. We can write this as Y = E(K, X) This notation indicates that Y

is produced by using encryption algorithm E as a function of the plaintext X, with the specific

function determined by the value of the key K.

The intended receiver, in possession of the key, is able to invert the transformation:

X = D(K, Y)

An opponent, observing Y but not having access to K or X, may attempt to recover X or K or

both X and K. It is assumed that the opponent knows the encryption (E) and decryption (D)

algorithms. If the opponent is interested in only this particular message, then the focus of the

effort is to recover X by generating a plaintext estimate . Often, however, the opponent is

interested in being able to read future messages as well, in which case an attempt is made to

recover K by generating an estimate .

Cryptography
Cryptographic systems are characterized along three independent dimensions:

➢ The type of operations used for transforming plaintext to ciphertext. All encryption
algorithms are based on two general principles: substitution, in which each element in the

➢ plaintext (bit, letter, group of bits or letters) is mapped into another element, and

transposition, in which elements in the plaintext are rearranged. The fundamental

requirement is that no information be lost (that is, that all operations are reversible). Most

systems, referred to as product systems, involve multiple stages of substitutions and

transpositions.

➢ 2. The number of keys used. If both sender and receiver use the same key, the system is
➢ referred to as symmetric, single-key, secret-key, or conventional encryption. If the sender

and receiver use different keys, the system is referred to as asymmetric, two-key, or
public-key encryption.

➢ 3. The way in which the plaintext is processed. A block cipher processes the input one

block of elements at a time, producing an output block for each input block. A stream

cipher processes the input elements continuously, producing output one element at a time,
as it goes along.

15

Cryptanalysis

Typically, the objective of attacking an encryption system is to recover the key in use rather then

simply to recover the plaintext of a single ciphertext. There are two general approaches to

attacking a conventional encryption scheme:

➢ Cryptanalysis: Cryptanalytic attacks rely on the nature of the algorithm plus perhaps

some knowledge of the general characteristics of the plaintext or even some sample

plaintext ciphertext pairs. This type of attack exploits the characteristics of the algorithm

to attempt to deduce a specific plaintext or to deduce the key being used.

➢ Brute-force attack: The attacker tries every possible key on a piece of ciphertext until an

intelligible translation into plaintext is obtained. On average, half of all possible keys

must be tried to achieve success.

1.8. SUBSTITUTION TECHNIQUES
a.Caesar Cipher

The earliest known use of a substitution cipher, and the simplest, was by Julius Caesar. The

Caesar cipher involves replacing each letter of the alphabet with the letter standing three places

further down the alphabet. For example,

plain: meet me after the toga party

cipher: PHHW PH DIWHU WKH WRJD SDUWB

Note that the alphabet is wrapped around, so that the letter following Z is A. We can define the

transformation by listing all possibilities, as follows:

plain: a b c d e f g h i j k l m n o p q r s t u v w x y z

cipher: D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

Let us assign a numerical equivalent to each letter:

a B C d e f g h i j K L m

0 1 2 3 4 5 6 7 8 9 10 11 12

n O P q r s t u v w X y z

13 14 15 16 17 18 19 20 21 22 23 24 25

Then the algorithm can be expressed as follows. For each plaintext letter p, substitute the

ciphertext letter C

C = E(3, p) = (p + 3) mod 26

A shift may be of any amount, so that the general Caesar algorithm is

C = E(k, p) = (p + k) mod 26

where k takes on a value in the range 1 to 25. The decryption algorithm is simply

p = D(k, C) = (C k) mod 26

If it is known that a given ciphertext is a Caesar cipher, then a brute-force cryptanalysis is easily

performed: Simply try all the 25 possible keys.

Three important characteristics of this problem enabled us to use a brute-force cryptanalysis:

➢ The encryption and decryption algorithms are known.

➢ There are only 25 keys to try.

➢ The language of the plaintext is known and easily recognizable.

b.Playfair Cipher

16

The best-known multiple-letter encryption cipher is the Playfair, which treats digrams in the

plaintext as single units and translates these units into ciphertext digrams. The Playfair algorithm

is based on the use of a 5 x 5 matrix of letters constructed using a keyword.

M O N A R

C H Y B D

E F G I/J K

L P O S T

U V W X Z

In this case, the keyword is monarchy. The matrix is constructed by filling in the letters of the

keyword (minus duplicates) from left to right and from top to bottom, and then filling in the

remainder of the matrix with the remaining letters in alphabetic order. The letters I and J count as

one letter.

Plaintext is encrypted two letters at a time, according to the following rules:

➢ Repeating plaintext letters that are in the same pair are separated with a filler letter, such
as x, so that balloon would be treated as ba lx lo on.

➢ Two plaintext letters that fall in the same row of the matrix are each replaced by the letter

to the right, with the first element of the row circularly following the last. For example, ar

is encrypted as RM.

➢ Two plaintext letters that fall in the same column are each replaced by the letter beneath,
with the top element of the column circularly following the last. For example, mu is

encrypted as CM.

➢ Otherwise, each plaintext letter in a pair is replaced by the letter that lies in its own row

and the column occupied by the other plaintext letter. Thus, hs becomes BP and ea

becomes IM (or JM, as the encipherer wishes).

c.Hill Cipher

Another interesting multiletter cipher is the Hill cipher, developed by the mathematician Lester

Hill in 1929. The encryption algorithm takes m successive plaintext letters and substitutes for

them m ciphertext letters. The substitution is determined by m linear equations in which each

character is assigned a numerical value (a = 0, b = 1 ... z = 25). For m = 3, the system can be

described as follows:

c1 = (k11P1 + k12P2 + k13P3) mod 26

c2 = (k21P1 + k22P2 + k23P3) mod 26

c3 = (k31P1 + k32P2 + k33P3) mod 26

This can be expressed in term of column vectors and matrices:

or

C = KP mod 26

where C and P are column vectors of length 3, representing the plaintext and ciphertext, and K is

a 3 x 3 matrix, representing the encryption key. Operations are performed mod 26.

17

For example, consider the plaintext "paymoremoney" and use the encryption key

The first three letters of the plaintext are represented by the vector

the ciphertext for the entire plaintext is LNSHDLEWMTRW.

Decryption requires using the inverse of the matrix K. The inverse K1 of a matrix K is

defined by the equation KK-1 = K-1K = I, where I is the matrix that is all zeros except for ones

along the main diagonal from upper left to lower right. The inverse of a matrix does not always

exist, but when it does, it satisfies the preceding equation. In this case, the inverse is:

If key is 2 × 2 matrix , take two plain text at a time

Suppose that the plaintext "friday" is encrypted using a 2 x 2 Hill cipher to yield the ciphertext

PQCFKU. Thus, we know that

Using the first two plaintext-ciphertext pairs, we have

The inverse of X can be computed:

so

This result is verified by testing the remaining plaintext-ciphertext pair.

d.Polyalphabetic Ciphers:

Another way to improve on the simple monoalphabetic technique is to use different

monoalphabetic substitutions as one proceeds through the plaintext message. The general name

for this approach is polyalphabetic substitution cipher.

All these techniques have the following features in common:

➢ A set of related monoalphabetic substitution rules is used.

➢ A key determines which particular rule is chosen for a given transformation
To aid in understanding the scheme and to aid in its use, a matrix known as the Vigenère tableau

is constructed.(Figure 1.6). Each of the 26 ciphers is laid out horizontally, with the key letter for

each cipher to its left. A normal alphabet for the plaintext runs across the top. The process of

18

encryption is simple: Given a key letter x and a plaintext letter y, the ciphertext letter is at the

intersection of the row labeled x and the column labeled y; in this case the ciphertext is V.

Figure 1.6 . The Modern Vigenère Tableau

To encrypt a message, a key is needed that is as long as the message. Usually, the key is a

repeating keyword. For example, if the keyword is deceptive, the message "we are discovered

save yourself" is encrypted as follows:

key: deceptivedeceptivedeceptive

plaintext: wearediscoveredsaveyourself

ciphertext: ZICVTWQNGRZGVTWAVZHCQYGLMGJ

Decryption is equally simple. The key letter again identifies the row. The position of the

ciphertext letter in that row determines the column, and the plaintext letter is at the top of that

column.

1.9 TRANSPOSITION TECHNIQUES
All the techniques examined so far involve the substitution of a ciphertext symbol for a plaintext

symbol. A very different kind of mapping is achieved by performing some sort of permutation on

the plaintext letters. This technique is referred to as a transposition cipher.

The simplest such cipher is the rail fence technique, in which the plaintext is written down as a

sequence of diagonals and then read off as a sequence of rows. For example, to encipher the

message "meet me after the toga party" with a rail fence of depth 2, we write the following:
m e m a t r h t g p r y

e t e f e t e o a a t

The encrypted message is
MEMATRHTGPRYETEFETEOAAT

This sort of thing would be trivial to cryptanalyze. A more complex scheme is to write the

message in a rectangle, row by row, and read the message off, column by column, but permute

19

the order of the columns. The order of the columns then becomes the key to the algorithm. For

example,

Key: 4 3 1 2 5 6 7

Plaintext: a t t a c k p

o s t p o n e

d u n t i l t

w o a m x y z

Ciphertext: TTNAAPTMTSUOAODWCOIXKNLYPETZ

A pure transposition cipher is easily recognized because it has the same letter frequencies as the

original plaintext. For the type of columnar transposition just shown, cryptanalysis is fairly

straightforward and involves laying out the ciphertext in a matrix and playing around with

column positions. Digram and trigram frequency tables can be useful.

The transposition cipher can be made significantly more secure by performing more than one

stage of transposition. The result is a more complex permutation that is not easily reconstructed.

Thus, if the foregoing message is reencrypted using the same algorithm,

Key: 4 3 1 2 5 6 7

Input: t t n a a p t

m t s u o a o

d w c o i x k

n l y p e t z

Output: NSCYAUOPTTWLTMDNAOIEPAXTTOKZ

1.10. ROTOR MACHINES
The basic principle of the rotor machine is illustrated in Figure 1.7. The machine consists of a set

of independently rotating cylinders through which electrical pulses can flow. Each cylinder has

26 input pins and 26 output pins, with internal wiring that connects each input pin to a unique

output pin. For simplicity, only three of the internal connections in each cylinder are shown.

20

Figure 1.7. Three-Rotor Machine with Wiring Represented by Numbered Contacts

If we associate each input and output pin with a letter of the alphabet, then a single cylinder

defines a monoalphabetic substitution. For example, in Figure 1.7, if an operator depresses the

key for the letter A, an electric signal is applied to the first pin of the first cylinder and flows

through the internal connection to the twenty-fifth output pin.

Consider a machine with a single cylinder. After each input key is depressed, the cylinder rotates

one position, so that the internal connections are shifted accordingly. Thus, a different

monoalphabetic substitution cipher is defined. After 26 letters of plaintext, the cylinder would be

back to the initial position. Thus, we have a polyalphabetic substitution algorithm with a period

of 26.

A single-cylinder system is trivial and does not present a formidable cryptanalytic task. The

power of the rotor machine is in the use of multiple cylinders, in which the output pins of one

cylinder are connected to the input pins of the next. Figure 1.7 shows a three-cylinder system.

The left half of the figure shows a position in which the input from the operator to the first pin

(plaintext letter a) is routed through the three cylinders to appear at the output of the second pin

(ciphertext letter B).

With multiple cylinders, the one closest to the operator input rotates one pin position with each

Key stroke. The right half of Figure 1.7 shows the system's configuration after a single

keystroke. For every complete rotation of the inner cylinder, the middle cylinder rotates one pin

position. Finally, for every complete rotation of the middle cylinder, the outer cylinder rotates

one pin position. This is the same type of operation seen with an odometer. The result is that

there are 26 x 26 x 26 = 17,576 different substitution alphabets used before the system repeats.

The addition of fourth and fifth rotors results in periods of 456,976 and 11,881,376 letters,

respectively.

21

1.11. STEGANOGRAPHY

A plaintext message may be hidden in one of two ways. The methods of steganography conceal

the existence of the message, whereas the methods of cryptography render the message

unintelligible to outsiders by various transformations of the text

A simple form of steganography, but one that is time-consuming to construct, is one in which an

arrangement of words or letters within an apparently innocuous text spells out the real message.

For example, the sequence of first letters of each word of the overall message spells out the

hidden message. Figure 1.8 shows an example in which a subset of the words of the overall

message is used to convey the hidden message.

Figure 1.8. A Puzzle for Inspector Morse

Various other techniques have been used historically; some examples are the following

➢ Character marking: Selected letters of printed or typewritten text are overwritten in

pencil. The marks are ordinarily not visible unless the paper is held at an angle to bright

light.

➢ Invisible ink: A number of substances can be used for writing but leave no visible trace
until heat or some chemical is applied to the paper.

➢ Pin punctures: Small pin punctures on selected letters are ordinarily not visible unless
the paper is held up in front of a light.

➢ Typewriter correction ribbon: Used between lines typed with a black ribbon, the
results of typing with the correction tape are visible only under a strong light.

Although these techniques may seem archaic, they have contemporary equivalents. [WAYN93]

proposes hiding a message by using the least significant bits of frames on a CD. For example, the

Kodak Photo CD format's maximum resolution is 2048 by 3072 pixels, with each pixel

containing 24 bits of RGB color information. The least significant bit of each 24-bit pixel can be

changed without greatly affecting the quality of the image. The result is that you can hide a 2.3-

megabyte message in a single digital snapshot. There are now a number of software packages

available that take this type of approach to steganography.

Steganography has a number of drawbacks when compared to encryption. It requires a lot of

overhead to hide a relatively few bits of information, although using some scheme like that

proposed in the preceding paragraph may make it more effective. Also, once the system is

discovered, it becomes virtually worthless. This problem, too, can be overcome if the insertion

method depends on some sort of key . Alternatively, a message can be first encrypted and then

hidden using steganography.

The advantage of steganography is that it can be employed by parties who have something to

22

lose should the fact of their secret communication (not necessarily the content) be discovered.

Encryption flags traffic as important or secret or may identify the sender or receiver as someone

with something to hide.

Reference Book :

Cryptography and Network Security Principles and Practices, Fourth Edition,By William

Stallings

UNIT-2

Block Cipher principles:

● A block cipher is an encryption/decryption scheme in which a block of plaintext is treated

as a whole and used to produce a ciphertext block of equal length.

● Many block ciphers have a Feistel structure. Such a structure consists of a number of

identical rounds of processing. In each round, a substitution is performed on one half of the

data being processed, followed by a permutation that interchanges the two halves. The

original key is expanded so that a different key is used for each round.

● The Data Encryption Standard (DES) has been the most widely used encryption algorithm

until recently. It exhibits the classic Feistel structure. DES uses a 64-bit block and a 56-

bitkey.

Stream Ciphers and Block Ciphers:

● A stream cipher is one that encrypts a digital data stream one bit or one byte at a

time. Examples of classical stream ciphers are the auto keyed Vigenère cipher and the

Vernam cipher.

● A block cipher is one in which a block of plaintext is treated as a whole and used to

produce a cipher text block of equal length.

● Typically, a block size of 64 or 128 bits is used. As with a stream cipher, the two users

share a

symmetric encryption key

The Feistel Cipher:

Feistel proposed that we can approximate the ideal block cipher by utilizing the concept of
a product cipher, which is the execution of two or more simple ciphers in sequence in such a way

that the final result or product is cryptographically stronger than any of the component ciphers.

The essence of the approach is to develop a block cipher with a key length of k bits and a block

length of n bits, allowing a total of 2k possible transformations, rather than the 2n! transformations
available with the ideal block cipher.

In particular, Feistel proposed the use of a cipher that alternates substitutions and

permutations, where these terms are defined as follows:

 Substitution: Each plaintext element or group of elements is uniquely replaced by a

corresponding ciphertextelement or group of elements.

 Permutation: A sequence of plaintext elements is replaced by a permutation of that

sequence. That is, no elements are added or deleted or replaced in the sequence, rather the

order in which the elements appear in the sequence is changed.

Feistel’s is a practical application of a proposal by Claude Shannon to develop a product cipher

that alternates confusion and diffusion functions

FEISTEL CIPHER STRUCTURE:

The left-hand side of Figure depicts the structure proposed by Feistel. The inputs to the
encryption algorithm are a plaintext block of length 2w bits and a key. The plaintext block is

divided into two halves, L0 and R0. The two halves of the data pass through n rounds of processing

and then combine to produce the ciphertext block. Each round i has as inputs Li-1 and Ri-1 derived

from the previous round, as well as a subkey Ki derived from the overall K. In general, the subkeys

Ki are different from K and from each other.

All rounds have the same structure. A substitution is performed on the left half of the data.

This is done by applying a round function F to the right half of the data and then taking the

exclusive-OR of the output of that function and the left half of the data. The round function has the

same general structure for each round butis parameterized by the round subkey Ki.

Permutation is performed that consists of the interchange of the two halves of the data.
This structure is a particular form of the substitution-permutation network (SPN) proposed by
Shannon. The exact realization of a Feistel network depends on the choice of the following

parameters and design features:

● Block size: Larger block sizes mean greater security (all other things being equal) but

reduced encryption/decryption speed for a given algorithm. The greater security is

achieved by greater diffusion. Traditionally, a block size of 64 bits has been considered

a reasonable tradeoff and was nearly universal in block cipher design. However, the new

AES uses a 128-bit block size.

● Key size: Larger key size means greater security but may decrease encryption/ decryption

speed. The greater security is achieved by greater resistance to brute-force attacks and

greater confusion. Key sizes of 64 bits or less are now widely considered to be inadequate,

and 128 bits has become acommon size.

● Number of rounds: The essence of the Feistel cipher is that a single round offers

inadequate security but that multiple rounds offer increasing security. A typical size is

16rounds.

Fig: Feistel Cipher structures

● Subkey generation algorithm: Greater complexity in this algorithm should lead to greater

difficulty ofcryptanalysis.

● Round function F: Again, greater complexitygenerally means greater resistance to

cryptanalysis. There are two other considerations in the design of a Feistel cipher:

● Fast software encryption/decryption: In many cases, encryption is embedded in applications

or

utility functions in such a way as to preclude a hardware implementation. Accordingly, the

speed of execution of the algorithm becomes aconcern.

Ease of analysis: Although we would like to make our algorithm as difficult as possible to cryptanalyze,

there is great benefit in making the algorithm easy to analyze. That is, if the algorithm can be concisely

and clearly explained, i t is easier to analyze that algorithm for cryptanalytic vulnerabilities and therefore

develop a higher level of assurance as to its strength. DES, for example, does not have an easily analysed

functionality.

Feistel Decryption Algorithm:

The process of decryption with a Feistel cipher is essentially the same as the encryption

process. The rule is as follows:

● Use the ciphertext as input to the algorithm, but use the sub keys K in reverse order.

● That is, use Kn in the first round, Kn-1 in the second round, and so on until K is used in

the last round. This is a nice feature because it means we need not implement two

different algorithms, one for encryption and one for decryption.

● To see that the same algorithm with a reversed key order produces the correct result,

which shows the encryption process going down the left-hand side and the decryption

process going up the right-hand side for a 16-round algorithm.

● For clarity, we use the notation LEi and REi for data traveling through the encryption

algorithm and LDi and RDi for data traveling through the decryption algorithm.

● The diagram indicates that, at every round, the intermediate value of the decryption

process is equal to the corresponding value of the encryptionprocess with the two halves

of the value swapped.

● After the last iteration of the encryption process, the two halves of the output are

swapped, so that the ciphertext is RE16||LE16. The output of that round is the ciphertext.

Now take that ciphertext and use it as input to the same algorithm. The input to the first

round is RE16||LE16, which is equal to the 32-bit swap of the output of the sixteenth

round of the encryption process.

● If you clearly observe that the output of the first round of the decryption process is equal

to a 32-bit swap of the input to the sixteenthround of the encryptionprocess. First,

consider the encryption process.

Data Encryption Standard:

 DES is a Symmetric-key algorithm for the encryption of electronicdata.

 DES originated at IBM in 1977& was adopted by the U.S Department of Defence. Now it

is under the NIST (National Institute of Standard & Technology)

 Data Encryption Standard (DES) is a widely-used method of data encryption using a

private (secret) key

 DES applies a 56-bit key to each 64-bit block of data. The process can run in several

modes and involves 16rounds or operations.

Inner workings of DES:

DES (and most of the other major symmetric ciphers) is based on a cipher known as the Feistel

block cipher. This was a block cipher developed by the IBM cryptography researcher Horst Feistel

in the early 70’s. It consists of a number of rounds where each round contains bit-shuffling, non-

linear substitutions (S-boxes) and exclusive OR operations. Most symmetric encryption schemes

today are based on this structure (known as a Feistel network).

Overall structure

DES (and most of the other major symmetric ciphers) is based on a cipher known as the Feistel

block cipher.

Looking at the left-hand side of the figure, we can see that the processing of the plaintext proceeds

in three phases.

 First, the 64-bit plaintext passes through an initial permutation (IP) that rearranges the bits

to produce the permutedinput.

 This is followedby a phase consisting of sixteen rounds of the same function, which involves

both permutation and substitution functions. The output of the last (sixteenth) round consists

of 64 bits that are a function of the input plaintext and the key. The left and right halves of

the output are swapped to produce the preoutput.

 Finally, the preoutput is passed through a permutation that is the inverse of the initial

permutation function, to produce the 64-bit cipher text. With the exception of the initial and

final permutations, DES has the exact structure of a Feistel cipher,

The right-hand portion of below shows the way in which the 56-bit key is used. Initially, the

key is passed through a permutation function. Then, for each of the sixteen rounds, a subkey (Ki)
is produced by the combination of a left circular shift and a permutation. The permutation function

is the same for each round, but a different subkey is produced because of the repeated shifts of the

key bits.

Initial Permutation:

The initial permutation and its inverse are defined by tables, as shown in Tables (a) and (b),

respectively. The tables are to be interpreted as follows. The input to a table consists of 64 bits

numbered from 1 to 64. The 64 entries in the permutation table contain a permutation of the

numbers from 1 to 64. Each entry in the permutation table indicates the position of a numbered

input bit in the output, which also consists of 64 bits.

To see that these two permutation functions are indeed the inverse of each other, consider the

following 64-bit input M:

SE

Where stream cipher Mi is a binary digit. Then the permutation X = (IP(M)) is as follows:

DETAILS OF SINGLE ROUND

Below figure shows the internal structure of a single round. Again, begin by focusing on the

left-hand side of the diagram. The left and right halves of each 64-bit intermediate value are treated

as separate 32-bit quantities, labeled L (left) and R (right). As in any classic Feistel cipher, the

overall processing at each round can be summarized in the following formulas:

The round key Ki is 48 bits. The R input is 32 bits. This R input is first expanded to 48 bits

by using a table that defines a permutation plus an expansion that involves duplication of 16 of the

R bits (Table 3.2c). The resulting 48 bits are XORed with Ki . This 48-bit result passes through

substitution function that produces a 32-bit output, which is permuted as defined by Table (d). The

role of the S-boxes in the function F is illustrated in Figure 3.7. The substitution consists of a set of

eight S-boxes, each of which accepts 6 bits as input and produces 4 bits as output. These

transformations are defined in Table 3.3, which is interpreted as follows: The first and last bits of

the input to box Si form a 2-bit binary number to select one of four substitutions defined by the four

rows in the table for. The middle four bits select one of the sixteen columns. The decimal value in

the cell selected by the row and column is then converted to its 4-bit representation to produce the

C

SE

output.

For example, in S1, for input 011001, the row is 01 (row 1) and the column is 1100 (column

12). The value in row 1, column 12 is 9, so the output is 1001. Each row of an S-box defines a
general reversible substitution. Figure 3.2 may be useful in understanding the mapping. The figure

shows the substitution for row 0 of box S1. The operation of the S-boxes is worth further comment.

Ignore for the moment the contribution of the key (Ki). If you examine the expansion table, you see

that the 32 bits of input are split into groups of 4 bits and then become groups of 6 bits by taking
the outer bits from the two adjacent groups. For example, if part of the input word is

... efgh ijkl mnop ... This becomes ... defghi hijklm lmnopq ...

The outer two bits of each group select one of four possible substitutions (one row of an S-box).

Then a 4-bit output value is substituted for the particular 4-bit input (the middle four input bits).

The 32-bit output from the eight S-boxes is then permuted, so that on the next round, the output

from each S-box immediately affects as many others as possible.

Substitution Boxes S: Have eight S-boxes which map 6 to 4 bits. Each S-box is actually 4 little 4

bit boxes. Outer bits 1 & 6 (row bits) select one rows. inner bits 2-5 (col bits) are substituted. Result

is 8 lots of 4 bits, or 32 bits. Row selection depends on both data & key

KEY GENERATION:

Returning to above all figures, we see that a 64-bit key is used as input to the algorithm.
The bits of the key are numbered from 1 through 64; every eighth bit is ignored, as indicated by the

lack of shading in Table 3.4a. The key is first subjected to a permutation governed by a table labeled
Permuted Choice One (Table 3.4b)

The resulting 56-bit key is then treated as two 28-bit quantities, labeled C0 and D0. At each round,

Ci-1 and Di-1 are separately subjected to a circular left shift or (rotation) of 1 or 2 bits, as governed

by Table 3.4d. These shifted values serve as input to the next round. They also serve as input to the

part labeled Permuted Choice Two (Table 3.4c), which produces a 48-bit output that serves as input

to the Function F(Ri-1, Ki).

DES:

Whatever process we following in the encryption that process is used for decryption also
but the order of key is changed on input message (cipher text).

Reverse order of keys are K16, K15 ,……, K1.

The Avalanche Effect:

● A desirable property of any encryption algorithm is that a small change in either the

plaintext or the key should produce a significant change in the ciphertext.

● In particular, a change in one bit of the plaintext or one bit of the key should produce a

change in many bits of the ciphertext.

● This is referred to as the avalanche effect.

THE STRENGTH OF DES:

The Use of 56-Bit Keys:

● With a key length of 56 bits, there are 256 possible keys, which is approximately 7.2

x 1016. A brute-force attack appears impractical. Assuming that, on average, half the

key space has to be searched, a single machine performing one DES encryption per

microsecond would take more than a thousand years to break the cipher. Diffie and

Hellman postulated that the technology existed to build a parallel machine with 1

million encryption devices, each of which could perform one encryption per

microsecond. This would bring the average search time down to about 10 hours.

The Nature of the DES Algorithm:

● Possibilities of cryptanalysis are done by finding the characteristics of DES algorithm.

● Learning of S-Box logic is complex.

● Weakness of the S-boxes not been discovered.

Timing Attacks:

● A timing attack is one in which information about the key or the plaintext is obtained

by observing how long it takes a given implementation to perform decryptions on

various ciphertexts.

● A timing attack exploits the fact that an encryption or decryption algorithm often takes

slightly different amounts of time on different inputs.

● DES appears to be fairly resistant to a successful timing attack.

Block Cipher Design Principles:

There are three critical aspects of block cipher design: the number of rounds, design

of the function F, and key scheduling.

Number of Rounds:

● The greater the number of rounds, the more difficult it is to perform cryptanalysis, even

for a relatively weak F.

● In general, the criterion should be that the number of rounds is chosen so that known

cryptanalytic efforts require greater effort than a simple brute-force key search attack.

This criterion was certainly used in the design of DES.

Design of Function F:

● The heart of a Feistel block cipher is the function F, which provides the element of

confusion in a Feistel cipher. Thus, it must be difficult to “unscramble” the substitution

performed by F.

● F must be nonlinear. The more nonlinear F, the more difficult any type of cryptanalysis

will be.

Key Schedule Algorithm:

● With any Feistel block cipher, the key is used to generate one subkey for each round.

● In general, we would like to select subkeys to maximize the difficulty of deducing

individual subkeys and the difficulty of working back to the main key.

Triple DES(3DES):

● Triple DES is simply another mode of DES operation. It takes three 64-bit keys, for an

overall key length of 192 bits.

● The Triple DES then breaks the user provided key into three subkeys, padding the keys

if necessary so they are each 64 bits long.

● The procedure for encryptionis exactlythe same as regular DES, but it is repeated three

times. Hence the name Triple DES. The data is encrypted with the first key, decrypted

with the second key, and finally encrypted again with the third key.

ADVANCED ENCRYPTION STANDARD (AES):

 The Advanced Encryption Standard (AES) was published by the National Institute

of Standards and Technology (NIST) in 2001.

 AES is a block cipher intended to replace DES for commercial applications.

 It uses a 128-bit block size and a key size of 128, 192, or 256 bits.

 AES does not use a Feistel structure. Instead, each full round consists of four separate

functions: byte substitution, permutation, arithmetic operations over a finite field, and XOR

with a key.

Rijndael was designed to have the following characteristics:

 Resistance against all known attacks

 Speed and code compactness on a wide range of platforms

 Design simplicity

AES parameters:

Key size(words/bytes/bits) 4/16/128 6/24/192 8/32/256

Plaintext block Size (words/bytes/bits) 4/16/128 4/16/128 4/16/128

Number of rounds 10 12 14

Round Key size (words/bytes/bits) 4/16/128 4/16/128 4/16/128

Expanded key size (words/bytes) 44/176 52/208 60/240

Inner Workings of a Round

The algorithm begins with an Add round key stage followed by 9 rounds of four stages and a

tenth round of three stages. This applies for both encryption and decryption with the exception that

each stage of a round the decryption algorithm is the inverse of its counterpart in the encryption

algorithm. The four stages are as follows:

1. Substitute bytes

2. Shift rows

3. Mix Columns

4. Add Round Key

The tenth round simply leaves out the Mix Columns stage. The first nine rounds of the

decryption algorithm consist of the following:

1. Inverse Shift rows

2. Inverse Substitute bytes

3. Inverse Add Round Key

4. Inverse Mix Columns

Again, the tenth round simply leaves out the Inverse Mix Columns stage. Each of these stages

will now be considered in more detail.

 FIGURE: 7.1 overall structure of the AES algorithm

Substitute Bytes

This stage (known as SubBytes) is simply a table lookup using a 16×16 matrix of byte values
called an s-box. This matrix consists of all the possible combinations of an 8-bit sequence

(28 = 16 × 16 = 256). However, the s-box is not just a random permutation of these values and there
is a well- defined method for creating the s-box tables. The designers of Rijndael showed how this
was done unlike the s-boxes in DES for which no rationale was given.

Figure 7.2: Data structures in the AES algorithm.

Again the matrix that gets operated upon throughout the encryption is known as state. We will

be concerned with how this matrix is effected in each round. For this particular round each byte is

mapped into a new byte in the following way: the leftmost nibble of the byte is used to specify a

particular row of the s-box and the rightmost nibble specifies a column. For example, the byte {95}

(curly brackets represent hex values in FIPS PUB 197) selects row 9 column 5 which turns out to

contain the value {2A}. This is then used to update the state matrix. Figure 7.3 depicts this idea.

The Inverse substitute byte transformation makes use of an inverse s-box. In this case what

is desired is to select the value {2A} and get the value {95}. Table 7.4 shows the two s-boxes and

it can be verified that this is in fact the case.

The s-box is designed to be resistant to known cryptanalytic attacks. Specifically, the

Rijndael developers sought a design that has a low correlation between input bits and output bits,

and the property that the output cannot be described as a simple mathematical function of the input.

In addition, the s-box has no fixed points (s-box(a) = a) and no opposite fixed points (s-box(a) =)

where is the bitwise compliment of a.

Shift Rows Transformation:

Shift row transformations are two types.

 Forward Shift row transformation which is used in encryption.

 Inverse Shift row transformation which is used in decryption.

FORWARD SHIFT ROW TRANSFORMATION:

▶ the first row of State matrix is not altered.

▶ for the second row, a 1-byte circular left shift is performed.

▶ for the third row, a 2-byte circular left shift is performed.

▶ for the fourth row, a 3-byte circular left shift is performed.

The following is an example of Shift Rows:

INVERSE SHIFT ROWS:

▶ Performs the circular shifts in the opposite direction for each of the last three rows, with a

one- byte circular right shift for the second row and soon.

MIX COLUMNS TRANSFORMATION:

Mix columns transformations are two types.

● Forward Mix columns transformation which is used in encryption.

● Inverse Mix columns transformation which is used in decryption.

Forward Mix columns transformation:

 Forward Mix columns transformation called mix columns, operates on each column

individually. Each byte of a column is mapped into a new value that is a function of all 4

bytes in that column. The transformation can be defined by the following matrix

multiplication on state.

Inverse Mix columns transformation:

 The inverse mix column transformation, called InvMixColumns, is defined by the following

matrix multiplication:

Add Round Key Transformation:

▶ In the forward add round key transformation, called AddRoundKey, the 128 bits of State
are bitwise XORed with the 128 bits of the round key.

▶ The inverse add round key transformation is identical to the forward add round key transformation,
because the XOR operation is its own inverse.

AES Key Expansion:

 The 128-bit key value can be expanded into 44 words i.e. 44X32=1408bits

 In each round 4 words will be used i.e. 4x32=128 bits

 In Add round key first 4 words w0, w1, w2, w3 are used.

 In first round, w4, w5, w6, w7 are used and
soon. The 128 bit key is expanded as follows

▶ First 128 bit key is arranged as a 4x4 matrix each value size is 8-bits

▶ The first 32 bits (k0, k1, k2, k3) is considered as w0.

▶ The first 32 bits (k4, k5, k6, k7) is considered as w1.

▶ The first 32 bits (k8, k9, k10, k11) is considered as w2.

▶ The first 32 bits (k12, k13, k14, k15) is considered as w4.

▶ Next 4 words w4, w5, w6, w7 are followed as

w4=w0 ⊕ w3

w5=w1 ⊕ w4

w6=w2 ⊕w5

w7=w3 ⊕w6

Figure. AES Key Expansion

BLOWFISH:

⮚ Blow fish is a symmetric block cipherdeveloped by bruce schner in year 1993.

⮚ Blow fish is designed to have following characteristics

✔ Speed: Blowfish encrypts data on 32-bit microprocessor at a rate of 18 clock

cycles per byte.

✔ Compact: it can run in less than 5k memory.

✔ Simple: very easy to implements.

✔ Variably secure: the key length is variable and can be as long as 448 bits. This

allows a trade-off between higher speed and higher security.

⮚ Blowfish is a Feistel type model.

BLOWFISH ALGORITHM:

⮚ Blowfish is Feistel type model, iterating a simple encryption function 16times.

⮚ Blowfish block size is 64& key can be upto 448 bits.

⮚ Blow fish encryption 64bits blocks of plaintext into 64-bit block of cipher.

⮚ Blow fish make use of a key that ranges from 32bits to 448 bits (one to fourteen

32 bit keys).

⮚ The keys are stored in a k-array (one to 14 32

bits) K1,K2 Kj where 1≤ j ≤14.

⮚ That key is used to generate 18 “32 bit” subkeys & four “8*32”bits S-boxes.

⮚ The subkeys are stored in the p- array P1,P2, P18

There are four s-boxes (each s-box size is 8*32 bits) each with 256 32bit entries.

S1,0, S1,1, S1,255
S2,0, S2,1, S2,255
S3,0, S3,1, S3,255
S4,0, S4,1, S4,255

The steps in generating the P-array & S-boxes as follows.

Step1: Initialize first the P-array and then 4 s-boxes in order using the bits of fractional part

of the constant п.

Step 2: Perform a bitwise xor of the P-array & k-array, reusing words from the k-array as

needed.

Example

P1 = P1 ⊕ K1

P2 = P1 ⊕ K2

...

P14 = P14 ⊕ K14

P15 = P15 ⊕ K1

P16 = P1 ⊕ K2

P17 = P1 ⊕ K3

P18 = P1 ⊕ K4

Step 3: Encrypt the 64 bit block of all zeros using the current P & S-arrays, Replace P1&P2

with the output of the encryption.

Step 4: Encrypt the output of step 3 using the current P- and S-arrays and replace P3, and P4,

with the resulting ciphertext.

Step 5: Continue this process to update all elements of P and then, in order, all elements of S,

using at each step the output of the continuously changing Blowfish algorithm.

The update process can be summarized as follows

Where Ep,s[Y] is the ciphertext produced by encrypting Y using Blowfish with the arrays S and P.

⮚ A total of 521 executions of the Blowfish encryption algorithm are required to produce
the final S- and P-arrays.

⮚ Accordingly, Blowfish is not suitable for applications in which the secret key changes

frequently. Further, for rapid execution, the P- and S-arrays can be stored rather than

derived from the key each time the algorithm is used.

⮚ This requires over 4 kilobytes of memory. Thus, Blowfish is not appropriate for

applications with limited memory, such as smart cards.

Encryption and Decryption

Blowfish uses two primitive operations:

⮚ Addition: Addition of words, denoted by +, is performed modulo 232.

⮚ Bitwise exclusive-OR: This operation is denoted by

In the above figure the encryption operation. The plaintext is divided into two 32-bit halves

LE, and RE,. We use the variables LE, and RE, to refer to the left and right half of the data after

round i has completed. The algorithm can be defined by the following pseudo code:

The function F is shown in below Figure. The 32-bit input to F is divided into 4 bytes. If

we label those bytes a, b, c, and d, then the function can be defined as follows:

Blowfish Decryption:

Blowfish decryption occurs in the same algorithmic direction as encryption. Rather than

the reverse. The algorithm can be defined as follows:

Advantages or features of blowfish:

⮚ A brute-force attack is even more difficult than may be apparent from the key length

because of the time-consuming subkey-generation process. A total of 522 executions of

the encryption algorithm are required to test a single key.

⮚ The function F gives Blowfish the best possible avalanche affect for a Feistel network: In

round i, every bit of Li-1, affects every bit of Ri-1. In addition, every subkey bit is affected

by every key bit. and therefore F has a perfect avalanche effect between the key (P,) and

the right half of the data (R,) after every round.

⮚ Every bit of the input to F is only used as input to one S-box. In contrast. In DES, many

bits are used as inputs to two S-boxes. which strengthens the algorithm considerably

against differential attacks. Schneier felt that this added complexity was not necessary

with key-dependent S-boxes.

⮚ Unlike in CAST, the function F in Blowfish is not round dependent. Schneier felt that

such dependency did not add any cryptographic merit, given that the P-array substitution

is already round dependent.

Block Cipher Modes of Operation:

A block cipher algorithm is a basic building block for providing data security. To apply a

block cipher in a variety of applications, different "modes of operation" have been defined by

NIST. In essence, a mode of operation is a technique for enhancing the effect of a cryptographic

algorithm or adapting the algorithm for an application, such as applying a block cipher to a

sequence of data blocks or a data stream. The modes are intended to cover virtually all the possible

applications of encryption for which a block cipher could be used.

Electronic Codebook Mode:

The simplest mode is the electronic codebook (ECB) mode, in which plaintext is handled

one block at a time and each block of plaintext is encrypted using the same key (Figure a & b).

The term codebook is used because, for a given key, there is a unique ciphertext for every b-bit

block of plaintext. For a message longer than b bits, the procedure is simply to break the message

into b-bit blocks, padding the last block if necessary. Decryption is performed one block at a time,

always using the same key. In Figure, the plaintext (padded as necessary) consists of a sequence

of b-bit blocks, P1, P2... PN; the corresponding sequence of ciphertext blocks is C1, C2,..., CN.

Figure. Electronic Codebook (ECB) Mode

The ECB method is ideal for a short amount of data, such as an encryption key. Thus, if

you want to transmit a DES key securely, ECB is the appropriate mode to use. The most

significant characteristic of ECB is that the same b-bit block of plaintext, if it appears more than

once in the message, always produces the same ciphertext.

For lengthy messages, the ECB mode may not be secure. If the message is highly

structured, it may be possible for a cryptanalyst to exploit these regularities. For example, if it is

known that the message always starts out with certain predefined fields, then the cryptanalyst

may have a number of known plaintext-ciphertext pairs to work with. If the message has repetitive

elements, with a period of repetition a multiple of b bits, then these elements can be identified by

the analyst. This may help in the analysis or may provide an opportunity for substituting or

rearranging blocks.

Cipher Block Chaining Mode:

To overcome the security deficiencies of ECB, we would like a technique in which the

same plaintext block, if repeated, produces different ciphertext blocks. A simple way to satisfy

this requirement is the cipher block chaining (CBC) mode.

In this scheme, the input to the encryption algorithm is the XOR of the current plaintext

block and the preceding ciphertext block; the same key is used for each block. In effect, we have

chained together the processing of the sequence of plaintext blocks. The input to the encryption

function for each plaintext block bears no fixed relationship to the plaintext block. Therefore,

repeating patterns of b bits are not exposed.

Figure: Cipher Block Chaining (CBC) Mode

For decryption, each cipher block is passed through the decryption algorithm. The result is

XORed with the preceding ciphertext block to produce the plaintext block. To produce the first

block of ciphertext, an initialization vector (IV) is XORed with the first block of plaintext. On

decryption, the IV is XORed with the output of the decryption algorithm to recover the first block

of plaintext. The IV is a data block that is that same size as the cipher block. The IV must be

known to both the sender and receiver but be unpredictable by a third party. For maximum

security, the IV should be protected against unauthorized changes. This could be done by sending

the IV using ECB encryption. Because of the chaining mechanism of CBC, it is an appropriate

mode for encrypting messages of length greater than b bits. CBC mode can be used for

authentication.

Cipher Feedback Mode:

The DES scheme is essentially a block cipher technique that uses b-bit blocks. However,

it is possible to convert DES into a stream cipher, using either the cipher feedback (CFB) or the

output feedback mode. Figure depicts the CFB scheme. In the figure, it is assumed that the unit

of transmission is s bits; a common value is s = 8. As with CBC, the units of plaintext are chained

together, so that the ciphertext of any plaintext unit is a function of all the preceding plaintext. In

this case, rather than units of b bits, the plaintext is divided into segments of s bits.

First, consider encryption. The input to the encryption function is a b-bit shift register that is

initially set to some initialization vector (IV). The leftmost (most significant) s bits of the output

of the encryption function are XORed with the first segment of plaintext P1 to produce the first

unit of ciphertext C, which is then transmitted. In addition, the contents of the shift register are

shifted left by s bits and C is placed in the rightmost (least significant) s bits of the shift register.

This process continues until all plaintext units have been encrypted.

For decryption, the same scheme is used, except that the received ciphertext unit is XORed

with the output of the encryption function to produce the plaintext unit.

Let Ss(X) be defined as the most significant s bits

of X. Then C1 = P1⊕ Ss[E(K,IV)]

Therefore,

P1 = C1 ⊕ Ss [E(K, IV)]

Figure: s-bit Cipher Feedback (CFB) Mode

Output Feedback Mode:

The output feedback (OFB) mode is similar in structure to that of CFB, as illustrated in Figure.

As can be seen, it is the output of the encryption function that is fed back to the shift register in

OFB, whereas in CFB the ciphertext unit is fed back to the shift register. One advantage of the

OFB method is that bit errors in transmission do not propagate. For example, if a bit error occurs

in C1 only the recovered value of is P1 affected; subsequent plaintext units are not corrupted.

With CFB, C1 also serves as input to the shift register and therefore causes additional corruption

downstream. The disadvantage of OFB is that it is more vulnerable to a message stream

modification attack than is CFB.

Figure: S-bit Output Feedback (OFB) Mode

Counter Mode:

In CTR mode a counter, equal to the plaintext block size is used. The only requirement is

that the counter value must be different for each plaintext block that is encrypted. Typically, the

counter is initialized to some value and then incremented by 1 for each subsequent block. For

encryption, the counter is encrypted and then XOR end with the plaintext block to produce the

ciphertext block; there is no chaining. For decryption, the same sequence of counter values is

used, with each encrypted counter XOR end with a ciphertext block to recover the corresponding

plaintext block.

Advantages:

1. Hardware efficiency

2. Software efficiency

3. Preprocessing

4. Random access

5. Provable security

6. Simplicity

Figure: Counter (CTR) Mode

STREAM CIPHER:

 A typical stream cipher encrypts plaintext one byte at a time, although a stream cipher may be

designed to operate on one bit at a time or on units larger than a byte at a time.

Figure: representative diagram of stream cipher structure.

In this structure, a key is input to a pseudorandom bit generator that produces a stream of 8-bit

numbers that are apparently random. The output of the generator, called a keystream, is combined one

byte at a time with the plaintext stream using the bitwise exclusive-OR (XOR) operation.

Example, if the next byte generated by the generator is 01101100 and the next plaintext byte is

11001100, then the resulting ciphertext byte is

Important design considerations for a stream cipher:

1. The encryption sequence should have a large period. A pseudorandom number generator uses a

function that produces a deterministic stream of bits that eventually repeats. The longer the

period of repeat the more difficult it will be to do cryptanalysis. This is essentially the same

consideration that was discussed with reference to the Vigenère cipher, namely that the longer

the keyword the more difficult the cryptanalysis.

2. The keystream should approximate the properties of a true random number stream as close as

possible. For example, there should be an approximately equal number of 1s and 0s. If the

keystream is treated as a stream of bytes, then all of the 256 possible byte values should appear

approximately equally often. The more random-appearing the keystream is, the more

randomized the ciphertext is, making cryptanalysis more difficult.

3. Note from Figure 7.7 that the output of the pseudorandom number generator is conditioned on

the value of the input key. To guard against brute-force attacks, the key needs to be sufficiently

long. The same considerations that apply to block ciphers are valid here. Thus, with current

technology, a key length of at least 128 bits is desirable.

With a properly designed pseudorandom number generator, a stream cipher can be as secure as a

block cipher of comparable key length. A potential advantage of a stream cipher is that stream ciphers

that do not use block ciphers as a building block are typically faster and use far less code than do block

ciphers.

RC4:

RC4 is a stream cipher designed in 1987 by Ron Rivest for RSA Security. It is a variable key

size stream cipher with byte-oriented operations. The algorithm is based on the use of a random

permutation. The RC4 algorithm is remarkably simple and quite easy to explain.

 A variablelength key of from 1 to 256 bytes (8 to 2048 bits) is used to initialize a 256-byte state

vector S, with elements S[0],S[1], c,S[255]. At all times, S contains a permutation of all 8-bit numbers

from 0 through 255. For encryption and decryption, a byte k is generated from S by selecting one of the

255 entries in a systematic fashion. As each value of k is generated, the entries in S are once again

permuted.

Initialization of S

To begin, the entries of S are set equal to the values from 0 through 255 in ascending order; that is,

S[0] = 0, S[1] = 1, c, S[255] = 255 . A temporary vector, T, is also created. If the length of the key K is

256 bytes, then K is transferred to T. Otherwise, for a key of length keylen bytes, the first keylen

elements of T are copied from K, and then K is repeated as many times as necessary to fill out T. These

preliminary operations can be summarized as

/* Initialization */

for i = 0 to 255 do

S[i] = i;

T[i] = K[i mod keylen];

Next we use T to produce the initial permutation of S. This involves starting with S[0] and going

through to S[255], and for each S[i], swapping S[i] with another byte in S according to a scheme dictated

by T[i]:

/* Initial Permutation of S */

j = 0;

for i = 0 to 255 do

 j = (j + S[i] + T[i]) mod 256;

Swap (S[i], S[j]);

Because the only operation on S is a swap, the only effect is a permutation. S still contains all the

numbers from 0 through 255.

Once the S vector is initialized, the input key is no longer used. Stream generation involves cycling

through all the elements of S[i], and for each S[i], swapping S[i] with another byte in S according to a

scheme dictated by the current configuration of S. After S[255] is reached, the process continues,

starting over again at S[0]:

/* Stream Generation */

i, j = 0;

while (true)

 i = (i + 1) mod 256;

 j = (j + S[i]) mod 256;

Swap (S[i], S[j]);

t = (S[i] + S[j]) mod 256;

k = S[t];

To encrypt, XOR the value k with the next byte of plaintext. To decrypt, XOR the value k with

the next byte of ciphertext. Following figure illustrates the RC4 logic.

PUBLIC KEY CRYPTOGRAPHY:

Introduction:

● Asymmetric encryption is a form of cryptosystem in which encryption and decryption are

performed using the different keys - one a public key and one a private key. It is also known

as public-key encryption.

● Asymmetric encryption transforms plaintext into ciphertext using a one of two keys and an

encryption algorithm. Using the paired key and a decryption algorithm, the plaintext is

recovered from the ciphertext.

● Asymmetric encryption can be used for confidentiality, authentication, or both.

● The most widely used public-key cryptosystem is RSA.

Principles of Public-Key Cryptosystems:

The concept of public key cryptography in invented for two most difficult problems of

Symmetric key encryption.

▪ key distribution – how to have secure communications in general without having to trust a

KDC (key distribution center) with yourkey.

▪ digital signatures – how to verify a message comes intact from the claimed sender.

Public-Key Cryptosystems:

A public-key encryption scheme has six ingredients

● Plaintext: This is the readable message or data that is fed into the algorithm as input.

● Encryption algorithm: The encryption algorithm performs various transformations on the

plaintext.

● Public and private keys: This is a pair of keys that have been selected so that if one is

used for encryption, the other is used for decryption. The exact transformations performed

by the algorithm depend on the public or private key that is provided as input.

● Ciphertext: This is the scrambled message produced as output. It depends on the plaintext

and the key. For a given message, two different keys will produce two different ciphertexts.

● Decryption algorithm: This algorithm accepts the ciphertext and the matching key and

produces the original plaintext.

The essential steps are the following:

1. Each user generates a pair of keys to be used for the encryption and decryption of messages.

2. Each user places one of the two keys in a public register or other accessible file. This is the

public key. The companion key is kept private. Each user maintains a collection of public

keys obtained from others.

3. If Bob wishes to send a confidential message to Alice, Bob encrypts the message using

Alice's public key.

4. When Alice receives the message, she decrypts it using her private key. No other recipient

can decrypt the message because only Alice knows Alice's private key.

ENCRYPTION:

The plaintext is encrypted with receiver’s public key and decrypted using receiver private key.

AUTHENTICATION:

● Plaintext is encrypted is sender’s private key and decrypted using sender’s publickey.

● The act of messages ciphertext getting decrypted by sender’s public key is the proof

that the message is actually sent by the designated sender.

 Difference between symmetric and public key encryption:

● Examples for conventional encryption are DES, AES,IDEA and Blowfish.

● Examples for public key encryption are RSA, Diffie-Hellman, Elliptic

Curve Cryptography.

There is some source A that produces a message in plaintext, X =[X1,X2,..., XM,]. The M

elements of X are letters in some finite alphabet. The message is intended for destination B.

B generates a related pair of keys: a public key, PUb, and a private key, PRb. PRb is known

only to B, whereas PUb is publicly available and therefore accessible by A.

With the message X and the encryption key PUb as input, A forms the ciphertext

Y = [Y1, Y2,...,YN]:

Y = E(PUb, X)

The intended receiver, in possession of the matching private key, is able to invert the transformation:

X = D(PRb, Y)

Figure: public key cryptosystems: Secrecy (or) confidentiality

Figure: Public-Key Cryptosystem: Authentication

Figure: Public-Key Cryptosystem: Authentication and

Secrecy

Applications for Public-Key Cryptosystems:

● Encryption/decryption: The sender encrypts a message with the recipient's public key.

● Digital signature: The sender "signs"a message with its private key. Signing is

achieved by a cryptographic algorithm applied to the message.

● Key exchange: Two sides cooperate to exchange a session key.

Requirements for Public-Key Cryptography:

1. It is computationally easy for a party B to generate a pair (public key PUb, private key PRb).

2. It is computationally easy for a sender A, knowing the public key and the message to

be encrypted, M, to generate the corresponding ciphertext: C = E(PUb, M)

3. It is computationally easy for the receiver B to decrypt the resulting ciphertext using

the private key to recover the original message: M= D(PRb, C) = D[PRb, E(PUb, M)]

4. It is computationally infeasible for an adversary, knowing the public key, PUb, to

determine the private key,PRb.

5. It is computationally infeasible for an adversary, knowing the public key, PUb,

and a ciphertext, C, to recover the original message, M.

We can add a sixth requirement that, although useful, is not necessary for all public-key

applications: The two keys can be applied in either order:

M = D[PUb, E(PRb, M)] = D[PRb, E(PUb, M)]

RSA Algorithm

⮚ It is the most common public key algorithm.

⮚ This RSA name is get from its inventors first letter (Rivest (R), Shamir (S) and Adleman

(A)) in the year 1977.

⮚ The RSA scheme is a block cipher in which the plaintext & ciphertext are integers

between 0 and n-1 for some n.

⮚ A typical size for n is 1024 bits or 309 decimal digits. That is, n is less than 2
1024

Description of the Algorithm:

⮚ RSA algorithm uses an expression with exponentials.

⮚ In RSA plaintext is encrypted in blocks, with each block having a binary value less than

some number n. that is, the block size must be less than or equal to log2(n)

⮚ RSA uses two exponents e and d where e public and d private.

⮚ Encryption and decryption are of following form, for some PlainText M and CipherText

block C

M=Cd mod = (Me mod n) d mod n =(Me)d mod n= Med mod n

Both sender and receiver must know the value of n.

The sender knows the value of e & only the receiver knows the value of d thus this is a public

key encryption algorithm with a

Publc key PU={e, n} Private key PR={d, n}

Steps of RSA algorithm:

Step 1: Select 2 prime numbers p & q

Step 2: Calculate n=pq

Step 3: Calculate Ø(n)=(p-1)(q-1)

Step 4: Select or find integer e (public key) which is relatively prime to Ø(n). ie., e

with gcd (Ø(n), e)=1 where 1<e< Ø(n).

Step 5: Calculate “d” (private key) by using following condition. d< Ø(n)

Step 6: Perform encryption by using

Step 7: perform Decryption by using

Example:

1. Select two prime numbers, p = 17 and q = 11.

2. Calculate n = pq = 17 × 11 = 187.

3. Calculate Ø(n) = (p - 1)(q - 1) = 16 × 10 = 160.

4. Select e such that e is relatively prime to Ø(n) = 160 and less than Ø (n); we choose

 e = 7.

5. Determine d such that de ≡1 (mod 160) and d < 160.The correct value is d = 23,

 because 23 * 7 = 161 = (1 × 160) + 1;

 d can be calculated using the extended Euclid‟s algorithm

6. The resulting keys are public key PU = {7, 187} and private key PR = {23, 187}.

The example shows the use of these keys for a plaintext input of M= 88. For encryption, we

need to calculate C = 887 mod 187. Exploiting the properties of modular arithmetic, we can do

this as follows.

The Security of RSA

Four possible approaches to attacking the RSA algorithm are

• Brute force: This involves trying all possible private keys.

• Mathematical attacks: There are several approaches, all equivalent in effort to factoring the

product of two primes.

• Timing attacks: These depend on the running time of the decryption algorithm.

• Chosen ciphertext attacks: This type of attack exploits properties of the RSA algorithm.

Trapdoor one-way function

▪ A trapdoor function is a function that is easy to perform one way, but has a secret that is

required to perform the inverse calculation efficiently.

▪ That is, if f is a trapdoor function, then y=f(x) is easy to compute, but x=f−1(y) is hard to

compute without some special knowledge k. Given k, then it is easy to computey=f−1(x,k).

▪ The analogy to a "trapdoor" is something like this: It's easy to fall through a trapdoor, but

it's very hard to climb back out and get to where you started unless you have a ladder.

▪ An example of such trapdoor one-way functions may be finding the prime factors of large

numbers. Nowadays, this task is practically infeasible.

▪ On the other hand, knowing one of the factors, it is easy to compute the other ones.

▪ For example: RSA is a one-way trapdoor function

Diffie-Hellman Key Exchange:

⮚ Diffie-Hellman key exchange is the first published public key algorithm

⮚ This Diffie-Hellman key exchange protocol is also known as exponential key agreement. And

it is based on mathematical principles.

⮚ The purpose of the algorithm is to enable two users to exchange a key securely that can then

be used for subsequent encryption of messages.

⮚ This algorithm itself is limited to exchange of the keys.

⮚ This algorithm depends for its effectiveness on the difficulty of computing discrete logarithms.

⮚ The discrete logarithms are defined in this algorithm in the way of define a primitive root of a

prime number.

⮚ Primitive root: we define a primitive root of a prime number P as one whose power generate

all the integers from 1 to P-1 that is if ‘a’ is a primitive root of the prime number P, then the

numbers are distinct and consist of the integers form 1 through P-1 in some permutation.

For any integer b and a, here a is a primitive root of prime number P, then

b≡ a
i
mod P 0 ≤ i ≤ (P-1)

The exponent i is refer as discrete logarithm or index of b for the base a, mod P. The value

denoted as ind a,p(b)

Algorithm for Diffie-Hellman Key Exchange:

Step 1: Select global public numbers q, α

q- Prime number

α- primitive root of q and α< q.

Step 2: if A & B users wish to exchange a key

a) User A select a random integer XA<q and computes

b) User B independently select a random integer XB <q and computes

c) Each side keeps the X value private and Makes the Y value available

publicly to the outer side.

 Step3: User A Computes the key as

 User B Computes the key as

Step 4: two calculation produce identical results

The result is that the two sides have exchanged a secret key.

Example:

MAN-in the Middle Attack (MITM)

Definition:

A man in the middle attack is a form of eavesdropping where communication between two

users is monitored and modified by an unauthorized party. Generally the attacker actively

eavesdrops by intercepting (stopping) a public key message exchange. The Diffie- Hellman key

exchange is insecure against a “Man in the middle attack”.

Suppose user A & B wish to exchange keys, and D is the adversary (opponent). The attack

proceeds as follows.

1. D prepares for the attack by generating two random private keys XD1 & XD2

and then computing the corresponding public keys YD1 and YD2.

2. A transmits YA to B

3. D intercepts YA and transmits YD1 to B. and D also calculates

4. B receives YD1 & calculate

5. B transmits YB to A

6. D intercepts YB and transmits YD2 to „A‟ and „D‟ calculate K1

7. A receives YD2 and calculates

At this point, Bob and Alice think that they share a secret key, but instead Bob and Darth share

secret key K1 and Alice and Darth share secret key K2. All future communication between Bob and

Alice is compromised in the following way.

The key exchange protocol is vulnerable to such an attack because it does not authenticate the

participants. This vulnerability can be overcome with the use of digital signatures and public-key

certificates.

UNIT-III

HASH FUNCTION:

It is a one of the authentication function; it accepts a variable size message M as input and

produces a fixed size output.

A hash value ‘h’ is generated by a function H of the form

M variable length message H(M)

fixed length hash value.

The hash code is also referred as Message Digest (MD) or hash value.

The main difference between Hash Function and MAC is a hash code does not use a key but is a

function only of the input message.

The hash value is appended to the message at the source at a time when the message is assumed or

known to be correct.

The receiver authenticates that message by re-computing the hash value.

Hash functions are often used to determine whether or not data has changed.

Figure 11.1 depicts the general operation of a cryptographic hash function

h=H (M)

APPLICATIONS OF CRYPTOGRAPHIC HASH FUNCTIONS

It is used in a wide variety of security applications and Internet protocols

Message Authentication

Message authentication is a mechanism or service used to verify the integrity of a message.

Message authentication assures that data received are exactly as sent (i.e., contain no

modification, insertion, deletion, or replay)

When a hash function is used to provide message authentication, the hash function value is often

referred to as a message digest.

Figure 11.2 illustrates a variety of ways in which a hash code can be used to provide message

authentication, as follows.

(a) The message plus concatenated hash code is encrypted using symmetric encryption. Because

only A and B share the secret key, the message must have come from A and has not been altered.

The hash code provides the structure or redundancy required to achieve authentication. Because

encryption is applied to the entire message plus hash code, confidentiality is also provided.

(b) Only the hash code is encrypted, using symmetric encryption. This reduces the processing

burden for those applications that do not require confidentiality

(c) It is possible to use a hash function but no encryption for message authentication. The

technique assumes that the two communicating parties share a common secret value S.A

computes the hash value over the concatenation of M and S and appends the resulting hash value

to M. Because B possesses, it can recomputed the hash value to verify. Because the secret value

itself is not sent, an opponent cannot modify an intercepted message and cannot generate a false

message.

(d) Confidentiality can be added to the approach of method (c) by encrypting the entire message

plus the hash code.

Digital Signatures

Another important application, which is similar to the message authentication application, is the

digital signature.

The operation of the digital signature is similar to that of the MAC. In the case of the digital

signature, the hash value of a message is encrypted with a user’s private key. Anyone who knows

the user’s public key can verify the integrity of the message that is associated with the digital

signature.

Figure 11.3 illustrates, in a simplified fashion, how a hash code is used to provide a digital

signature.

REQUIREMENTS& SECURITY FOR A HASH FUNCTION:

The purpose of a hash function is to produce a “fingerprint” of a file, message or other block of

data. To be useful for message authentication, a hash function H must have the following

properties:

H can be applied to a block of data of any size

H produces a fixed length output.

H(x) is relatively easy to compute for any given x, making both hardware and software

implementations practical.

One-way property: - for any given value h, it is computationally infeasible to find x such that

H(x)=h. this sometimes referred to in the literature as the one way property.

Weak collision resistance:- for any given block x. it is computationally infeasible to find y≠x with

H(y)=H(x). this is referred as weak collision resistance.

Strong collision resistance:- it is computationally infeasible to find any pair (X,Y) such that

H(x)=H(y). this is referred as strong collision resistance.

A hash function that satisfies the first five properties in Table 11.1 is referred to as a weak hash

function. If the sixth property, collision resistant, is also satisfied, then it is referred to as a strong

hash function.

As with encryption algorithms, there are two categories of attacks on hash functions: brute-force

attacks and cryptanalysis

Brute-Force Attacks

A brute-force attack does not depend on the specific algorithm but depends only on bit length. In

the case of a hash function, a brute-force attack depends only on the bit length of the hash value.

A cryptanalysis, in contrast, is an attack based on weaknesses in a particular cryptographic

algorithm.

Cryptanalysis

As with encryption algorithms, cryptanalytic attacks on hash functions seek to exploit some

property of the algorithm to perform some attack other than an exhaustive search. The way to

measure the resistance of a hash algorithm to cryptanalysis is to compare its strength to the effort

required for a brute-force attack.

That is, an ideal hash algorithm will require a cryptanalytic effort greater than or equal to the

brute-force effort.

SHA(Secure Hash Algorithm):

In recent years, the most widely used hash function has been the Secure Hash Algorithm (SHA).

Introduction:

The Secure Hash Algorithm is a family of cryptographic hash functions developed by the NIST

(National Institute of Standards & Technology).

SHA is based on the MD4 algorithm and its design closely models MD5.

SHA-1 is specified in RFC 3174.

Purpose: Authentication, not encryption.

SHA-1 produces a hash value of 160 bits. In 2002, NIST produced a revised version of the

standard, FIPS 180-2, that defined three new versions of SHA, with hash value lengths of 256,

384, and 512 bits, known as SHA-256, SHA-384, and SHA-512, respectively.

SHA-1 logic:

The algorithm takes a message with maximum of length of less than 264 bits.

Produce output is 160 bits message digest.

The input is processed 512 bits block.

Processed Steps:

Algorithm processing Steps:

Step1: Append Padding Bits

Step 2: Append Length

Step 3: Initialize MD Buffer

Step 4: Process Message in 512 bit (16-Word) Blocks

Step 5: Output

http://en.wikipedia.org/wiki/Cryptographic_hash_function

SHA-512 Logic

The algorithm takes as input a message with a maximum length of less than 2128 bits and

produces as output a 512-bit message digest. The input is processed in 1024-bit blocks.

This follows the general structure depicted in Figure 11.8. The processing consists of the

following steps.

Step 1 Append padding bits.

The message is padded so that its length is congruent to 896 modulo 1024 [length K

896(mod 1024)]. Padding is always added, even if the message is already of the desired length.

Thus, the number of padding bits is in the range of 1 to 1024. The padding consists of a single 1

bit followed by the necessary number of 0 bits.

Step 2 Append lengths.

A block of 128 bits is appended to the message. This block is treated as an unsigned 128-bit

integer (most significant byte first) and contains the length of the original message (before the

padding).

The outcome of the first two steps yields a message that is an integer multiple of 1024 bits

in length. In Figure 11.9, the expanded message is represented as the sequence of 1024-bit blocks

M1, M2, c, MN, so that the total length of the expanded message is N * 1024bits.

Step 3 Initialize hash buffer.

A 512-bit buffer is used to hold intermediate and final results of the hash function. The

buffer can be represented as eight 64-bit registers (a, b, c, d, e, f, g, h). These registers are

initialized to the following 64-bit integers (hexadecimal values):

 a = 6A09E667F3BCC908 e = 510E527FADE682D1

b = BB67AE8584CAA73B f = 9B05688C2B3E6C1F

c = 3C6EF372FE94F82B g = 1F83D9ABFB41BD6B

d = A54FF53A5F1D36F1 h = 5BE0CD19137E2179

These values are stored in big-endian format, which is the most significant byte of a word in

the low-address (leftmost) byte position. These words were obtained by taking the first sixty-four

bits of the fractional parts of the square roots of the first eight prime numbers.

Step 4 Process message in 1024-bit (128-word) blocks.

The heart of the algorithm is a module that consists of 80 rounds; this module is labeled F.

Each round takes as input the 512-bit buffer value, abcdefgh, and updates the contents of the buffer.

At input to the first round, the buffer has the value of the intermediate hash value, Hi-1. Each round t

makes use of a 64-bit value Wt, derived from the current 1024-bit block being processed (Mi).

These values are derived using a message schedule described subsequently. Each round also makes

use of an additive constant Kt, where 0 … t … 79 indicates one of the 80 rounds. These words

represent the first 64 bits of the fractional parts of the cube roots of the first 80 prime numbers. The

constants provide a “randomized” set of 64-bit patterns, which should eliminate any regularities in

the input data. Table 11.4 shows these constants in hexadecimal format (from left to right).

The output of the eightieth round is added to the input to the first round (Hi-1) to produce Hi. The

addition is done independently for each of the eight words in the buffer with each of the

corresponding words in Hi-1, using addition modulo 264. Step 5 Output. After all N 1024-bit blocks

have been processed, the output from the Nth stage is the 512-bit message digest

MESSAGE AUTHENTICATION

Message authentication is a mechanism or service used to verify the integrity of a message.

Message authentication assures that data received are exactly as sent by (i.e., contain no

modification, insertion, deletion, or replay) and that the purported identity of the sender is valid.

MESSAGE AUTHENTICATION REQUIREMENTS

In the context of communications across a network, the following attacks can be identified

1. Disclosure: Release of message contents to any person or process not possessing the

appropriate cryptographic key.

2. Traffic analysis: Discovery of the pattern of traffic between parties. In a connection oriented

application, the frequency and duration of connections could be determined.

3. Masquerade: Insertion of messages into the network from a fraudulent source.

4. Content modification: Changes to the contents of a message, including insertion, deletion,

transposition, and modification.

5. Sequence modification: Any modification to a sequence of messages between parties, including

insertion, deletion, and reordering.

6. Timing modification: Delay or replay of messages. In a connection-oriented application, an

entire session or sequence of messages could be a replay of some previous valid session, or

individual messages in the sequence could be delayed or replayed.

7. Source repudiation: Denial of transmission of message by source.

8. Destination repudiation: Denial of receipt of message by destination.

MESSAGE AUTHENTICATION FUNCTIONS

Any message authentication or digital signature mechanism has two levels of functionality. At the

lower level, there must be some sort of function that produces an authenticator: a value to be used

to authenticate a message. This lower-level function is then used as a primitive in a higher-level

authentication protocol that enables a receiver to verify the authenticity of a message. there are 3

types of functions that may be used to produce an authenticator.

• Hash function: A function that maps a message of any length into a fixed length hash value,

which serves as the authenticator

• Message encryption: The cipher text of the entire message serves as its authenticator

• Message authentication code (MAC): A function of the message and a secret key that produces

a fixed-length value that serves as the authenticator

Message Encryption

Message encryption by itself can provide a measure of authentication. The analysis differs for

symmetric and public-key encryption schemes.

MESSAGE AUTHENTICATION CODE (MAC)

This authentication technique involves the use of a secret key to generate a small fixed-size block

of data, known as a cryptographic checksum or MAC, that is appended to the message. This

technique assumes that two communicating parties, say A and B, share a common secret

key

When A has a message to send to B, it calculates the MAC as a function of the message and the

key

The message plus MAC are transmitted to the intended recipient. The recipient performs the same

calculation on the received message, using the same secret key, to generate a new MAC. The

received MAC is compared to the calculated MAC (Figure 12.4a). If we assume that only the

receiver and the sender know the identity of the secret key, and if the received MAC matches the

calculated MAC, then

1. The receiver is assured that the message has not been altered. If an attacker alters the message

but does not alter the MAC, then the receiver’s calculation of the MAC will differ from the

received MAC.

2. The receiver is assured that the message is from the alleged sender. Because no one else knows

the secret key.

SECURITY OF MACS:

Just as with symmetric and public-key encryption, we can group attacks on hash functions and

MACs into two categories: brute-force attacks and cryptanalysis.

brute-force attacks

A brute-force attack on a MAC is a more difficult undertaking than a brute-force attack on a hash

function because it requires known message-tag pairs. The strength of a hash function against

brute-force attacks depends solely on the length of the hash code produced by the algorithm, with

cost (2m/2). A brute-force attack on a MAC has cost related to min(2k, 2n), similar to symmetric

encryption algorithms. It would appear reasonable to require that the key length and MAC length

satisfy a relationship such as min(k, n) >= N, where N is perhaps in the range of 128 bits.

cryptanalysis.

As with encryption algorithms, cryptanalytic attacks on hash functions and MAC algorithms seek

to exploit some property of the algorithm to perform some attack other than an exhaustive search.

The way to measure the resistance of a hash or MAC algorithm to cryptanalysis is to compare its

strength to the effort required for a brute force attack. That is, an ideal hash or MAC algorithm

will require a cryptanalytic effort greater than or equal to the brute-force effort.

HMAC:

In recent years, there has been increased interest in developing a MAC derived from a

cryptographic hash function, because they generally execute faster than symmetric block ciphers,

and because code for cryptographic hash functions is widely available.

A hash function such as SHA was not designed for use as a MAC and cannot be used directly for

that purpose because it does not rely on a secret key. There have been a number of proposals for

the incorporation of a secret key into an existing hash algorithm, originally by just pre-pending a

key to the message. Problems were found with these earlier, simpler proposals, but they resulted

in the development of HMAC.

HMAC Design Objectives:

• To use, without modifications, available hash functions. In particular, to use hash functions that

perform well in software and for which code is freely and widely available.

• To allow for easy replaceability of the embedded hash function in case faster or more secure

hash functions are found or required.

• To preserve the original performance of the hash function without incurring a significant

degradation.

• To use and handle keys in a simple way.

• To have a well understood cryptographic analysis of the strength of the authentication

mechanism based on reasonable assumptions about the embedded hash function.

HMAC Algorithm:

Cipher-Based Message Authentication Code (CMAC)

DIGITAL SIGNATURES

A digital signature is an authentication mechanism that enables the creator of a message to attach

a code that acts as a signature. Typically the signature is formed by taking the hash of the message

and encrypting the message with the creator’s private key. The signature guarantees the source

and integrity of the message.

The digital signature standard (DSS) is an NIST standard that uses the secure hash algorithm

(SHA).

Properties

Message authentication protects two parties who exchange messages from any third party.

However, it does not protect the two parties against each other. Several forms of dispute between

the two are possible.

DIGITAL SIGNATURE STANDARD

The Digital Signature Standard (DSS) makes use of the Secure Hash Algorithm (SHA) described

and presents a new digital signature technique, the Digital Signature

Algorithm (DSA).

This latest version incorporates digital signature algorithms based on RSA and on elliptic curve

cryptography. In this section, we discuss the original DSS algorithm. The DSS uses an algorithm

that is designed to provide only the digital signature function.Unlike RSA, it cannot be used for

encryption or key exchange. Nevertheless, it is a public-key technique.

In the RSA approach, the message to be signed is input to a hash function that produces a secure

hash code of fixed length. This hash code is then encrypted using the sender's private key to form

the signature. Both the message and the signature are then transmitted. The recipient takes the

message and produces a hash code.

The recipient also decrypts the signature using the sender's public key. If the calculated hash code

matches the decrypted signature, the signature is accepted as valid. Because only the sender

knows the private key, only the sender could have produced a valid signature.

Digital Signature Algorithm

The DSA is based on the difficulty of computing discrete logarithms and is based on schemes

originally presented by Elgamal and Schnorr. The DSA signature scheme has advantages, being

both smaller (320 vs 1024bit) and faster over RSA. Unlike RSA, it cannot be used for encryption

or key exchange. Nevertheless, it is a public-key technique

DSA typically uses a common set of global parameters (p,q,g) for a community of clients, as

shown. A 160-bit prime number q is chosen. Next, a prime number p is selected with a length

between 512 and 1024 bits such that q divides (p – 1). Finally, g is chosen to be of the form h(p–1)/q

mod p where h is an integer between 1 and (p – 1) with the restriction that g must be greater than

1. Thus, the global public key components of DSA have the same for as in the Schnorr signature

scheme.

Signing and Verifying

The structure of the algorithm, as revealed here is quite interesting. Note that the test at the end is on the

value r, which does not depend on the message at all. Instead, r is a function of k and the three global

public-key components. The multiplicative inverse of k (mod q) is passed to a function that also has as

inputs the message hash code and the user's private key. The structure of this function is such that the

receiver can recover r using the incoming message and signature, the public key of the user, and the

global public key.

KEY MANAGEMENT AND DISTRIBUTION

Key management and Distribution Symmetric Key Distribution Using

Symmetric Encryption

For symmetric encryption to work, the two parties to an exchange must share the same key,

and that key must be protected from access by others. Therefore, the term that refers to the means of

delivering a key to two parties who wish to exchange data, without allowing others to see the key.

For two parties A and B, key distribution can be achieved in a number of ways, as follows:

1. A can select a key and physically deliver it to B.

2. A third party can select the key and physically deliver it to A and B.

3. If A and B have previously and recently used a key, one party can transmit the new key to

the other, encrypted using the old key.

4. If A and B each has an encrypted connection to a third party C, C can deliver a key on the

encrypted links to A and B.

Physical delivery (1 & 2) is simplest - but only applicable when there is personal contact

between recipient and key issuer. This is fine for link encryption where devices & keys occur in

pairs, but does not scale as number of parties who wish to communicate grows. 3 is mostly based on

1 or 2 occurring first.

A third party, whom all parties trust, can be used as a trusted intermediary to mediate the

establishment of secure communications between them (4). Must trust intermediary not to abuse the

knowledge of all session keys. As number of parties grow, some variant of 4 is only practical

solution to the huge growth in number of keys potentially needed.

Key distribution centre:

 The use of a key distribution center is based on the use of a hierarchy of keys. At a

minimum, two levels of keys are used.

 Communication between end systems is encrypted using a temporary key, often referred to as a

Session key.

 Typically, the session key is used for the duration of a logical connection and then

discarded

 Master key is shared by the key distribution center and an end system or user and used to encrypt

the session key.

Key Distribution Scenario:

Let us assume that user A wishes to establish a logical connection with B and requires a one-

time session key to protect the data transmitted over the connection. A has a master key, Ka, known

only to itself and the KDC; similarly, B shares the master key Kb with the KDC. The following steps

occur:

1 A issues a request to the KDC for a session key to protect a logical connection to B. The message

includes the identity of A and B and a unique identifier, N1, for this transaction, which we refer

to as a nonce. The nonce may be a timestamp, a counter, or a random number; the minimum

requirement is that it differs with each request. Also, to prevent masquerade, it should be

difficult for an opponent to guess the nonce. Thus, a random number is a good choice for a

nonce.

2. The KDC responds with a message encrypted using Ka Thus, A is the only one who can

successfully read the message, and A knows that it originated at the KDC. The message includes

two items intended for A:

 The one-time session key, Ks, to be used for the session

 The original request message, including the nonce, to enable A to match this

response with the appropriate request

Thus, A can verify that its original request was not altered before reception by the KDC and,

because of the nonce, that this is not a replay of some previous request. In addition,

the message includes two items intended for B:

 The one-time session key, Ks to be used for the session

 An identifier of A (e.g., its network address), IDA

These last two items are encrypted with Kb (the master key that the KDC shares with B). They

are to be sent to B to establish the connection and prove A's identity.

3. A stores the session key for use in the upcoming session and forwards to B the information that

originated at the KDC for B, namely, E(Kb, [Ks || IDA]). Because this information is encrypted

with Kb, it is protected from eavesdropping. B now knows the session key (Ks), knows that the

other party is A (from IDA), and knows that the information originated at the KDC

(because it is encrypted using Kb). At this point, a session key has been securely

delivered to A and B, and they may begin

their protected exchange. However, two additional steps are desirable:

4. Using the newly minted session key for encryption, B sends a nonce, N2, to A.

5. Also using Ks, A responds with f(N2), where f is a function that performs some transformation

on N2 (e.g., adding one).

These steps assure B that the original message it received (step 3) was not a replay.

Note that the actual key distribution involves only steps 1 through 3 but that steps 4 and 5, as well as

3, perform an authentication function.

Major Issues with KDC:

Hierarchical Key Control

 It is not necessary to limit the key distribution function to a single KDC.Indeed,for very large

networks,it may not be practical to do so.As an alternative,a hierarchy of KDCs can be

established.

 For example, there can be local KDCs, each responsible for a small domain of the overall

internetwork, such as a single LAN or a single building.

 If two entities in different domains desire a shared key, then the corresponding local KDCs

can communicate through a global KDC.

 The hierarchical concept can be extended to three or even more layers, depending on the size of

the user population and the geographic scope of the internetwork.

 A hierarchical scheme minimizes the effort involved in master key distribution, because most

master keys are those shared by a local KDC with its local entities.

Session Key Lifetime

 The distribution of session keys delays the start of any exchange and places a burden on network

capacity. A security manager must try to balance these competing considerations in determining

the lifetime of a particular session key.

 For connection-oriented protocols, one obvious choice is to use the same session key for the

length of time that the connection is open, using a new session key for each new session.

 If a logical connection has a very long lifetime, then it would be prudent to change the session

key periodically, perhaps every time the PDU (protocol data unit) sequence number cycles.

 For a connectionless protocol, such as a transaction-oriented protocol, there is no explicit

connection initiation or termination.

 Thus, it is not obvious how often one needs to change the session key. The most secure

approach is to use a new session key for each exchange.

 A better strategy is to use a given session key for a certain fixed period only or for a certain

number of transactions.

A Transparent Key Control Scheme

 The approach suggested in Figure 14.3is useful for providing end-to-end encryption at a network

or transport level in a way that is transparent to the end users.

 The approach assumes that communication makes use of a connection-oriented end-to- end

protocol, such as TCP.

 The noteworthy element of this approach is a session security module (SSM), which may consist

of functionality at one protocol layer,that performs end-to-end encryption and obtains session

keys on behalf of its host or terminal.

The steps involved in establishing a connection are shown in Figure

1. When one host wishes to set up a connection to another host, it transmits a

connection-request packet.

2. The SSM saves that packet and applies to the KDC for permission to establish the

connection.

3. The communication between the SSM and the KDC is encrypted using a master

key shared only by this SSM and the KDC.If the KDC approves the

connection request,it generates the session key and delivers it to the two

appropriate SSMs,using a unique permanent key for each SSM.

4. The requesting SSM can now release the connection request packet, and a

connection is set up between the two end systems.

5. All user data exchanged between the two end systems are encrypted by their

respective SSMs using the onetime session key.

 The automated key distribution approach provides the flexibility and dynamic characteristics

needed to allow a number of terminal users to access a number of hosts and for the hosts to

exchange data with each other.

Decentralized Key Control

 The use of a key distribution center imposes the requirement that the KDC be trusted and be

protected from subversion. This requirement can be avoided if key distribution is fully

decentralized.

 Although full decentralization is not practical for larger networks using symmetric

encryption only, it may be useful within a local context.

 A decentralized approach requires that each end system be able to communicate in a secure

manner with all potential partner end systems for purposes of session key distribution.

 Thus, there may need to be as many as (𝑛 − 1)/2master keys for a configuration with 𝑛

end systems.

 A session key may be established with the following sequence of steps (Figure 14.5).

1. A issues a request to B for a session key and includes a nonce, .

2. B responds with a message that is encrypted using the shared master key. The response

includes the session key selected by B,an identifier of B,the value f(N1), and another nonce

N2.

3. Using the new session key,A returns f(N2) to B.

Controlling Key Usage

The concept of a key hierarchy and the use of automated key distribution techniques greatly

reduce the number of keys that must be manually managed and distributed. It also may be desirable

to impose some control on the way in which automatically distributed keys are used. For example, in

addition to separating master keys from session keys, we may wish to define different types of

session keys on the basis of use, such as

 Data-encrypting key, for general communication across a network

 PIN-encrypting key, for personal identification numbers (PINs) used in

electronic funds transfer and point-of-sale applications

 File-encrypting key, for encrypting files stored in publicly accessible locations

To illustrate the value of separating keys by type, consider the risk that a master key is

imported as a data-encrypting key into a device. Normally, the master key is physically secured

within the cryptographic hardware of the key distribution center and of the end systems. Session

keys encrypted with this master key are available to application programs, as are the data encrypted

with such session keys.

However, if a master key is treated as a session key, it may be possible for an unauthorized

application to obtain plaintext of session keys encrypted with that master key.

The proposed technique is for use with DES and makes use of the extra 8 bits in each 64-bit

DES key. That is, the eight non-key bits ordinarily reserved for parity checking form the key tag.

The bits have the following interpretation:

• One bit indicates whether the key is a session key or a master key.

• One bit indicates whether the key can be used for encryption.

• One bit indicates whether the key can be used for decryption.

• The remaining bits are spares for future use.

Because the tag is embedded in the key, it is encrypted along with the key when that key is

distributed, thus providing protection. The drawbacks of this scheme are

1. The tag length is limited to 8 bits, limiting its flexibility and functionality.

2. Because the tag is not transmitted in clear form, it can be used only at the point

of decryption, limiting the ways in which key use can be controlled.

A more flexible scheme, referred to as the control vector, is described here. In this

scheme, each session key has an associated control vector consisting of a number of fields

that specify the uses and restrictions for that session key. The length of the control vector may

vary.

The control vector is cryptographically coupled with the key at the time of key

generation at the KDC.

As a first step, the control vector is passed through a hash function that produces a value

whose length is equal to the encryption key length. In essence, a hash function maps values from a

larger range into a smaller range with a reasonably uniform spread. Thus, for example, if numbers

in the range 1 to 100 are hashed into numbers in the range 1 to 10, approximately 10% of the

source values should map into each of the target values. The hash value is then XORed with the

master key to produce an output that

is used as the key input for encrypting the session key. Thus,

Hash value = H = h(CV) Key

input = Km ⊕H

Ciphertext = E([Km ⊕H], Ks)

where is the master key and is the session key. The session key is recovered in plaintext by

the reverse operation:

D([Km⊕H], E([Km ⊕H], Ks))

When a session key is delivered to a user from the KDC, it is accompanied by the

control vector in clear form. The session key can be recovered only by using both the

master key that the user shares with the KDC and the control vector. Thus, the linkage

between the session key and its control vector is maintained.

Use of the control vector has two advantages over use of an 8-bit tag. First, there is

no restriction on length of the control vector, which enables arbitrarily complex controls to

be imposed on key use. Second, the control vector is available in clear form at all stages of

operation. Thus, control of key use can be exercised in multiple locations.

SYMMETRIC KEY DISTRIBUTION USING

ASYMMETRIC ENCRYPTION

 Once public keys have been distributed or have become accessible, secure

communication that thwarts eavesdropping, tampering, or both, is possible.

 Public-key encryption provides for the distribution of secret keys to be used for

conventional encryption.

Simple Secret Key Distribution

 A generates a public/private key pair {PUa, PRa} and transmits a message to B

consisting of PUa and an identifier of A, IDA

 B generates a secret key, Ks, and transmits it to A, encrypted with A's public key.

 A computes D(PRa, E(PUa, Ks)) to recover the secret key. Because only A can

decrypt the message, only A and B will know the identity of Ks.

 A discards PUa and PRa and B discards PUa.

Here third party can intercept messages and then either relay the intercepted message or

substitute another message Such an attack is known as a man-in-the-middle attack.

Secret Key Distribution with Confidentiality and Authentication:

 A uses B's public key to encrypt a message to B containing an identifier of A (IDA) and a nonce

(N1), which is used to identify this transaction uniquely

 B sends a message to A encrypted with PUa and containing A's nonce (N1) as well as a new

nonce generated by B (N2) Because only B could have decrypted message (1), the presence of

N1 in message (2) assures A that the correspondent is B

 A returns N2 encrypted using B's public key, to assure B that its correspondent is A.

 A selects a secret key Ks and sends M = E(PUb, E(PRa, Ks)) to B. Encryption of this message

with B's public key ensures that only B can read it; encryption with A's private key ensures that

only A could have sent it.

 B computes D(PUa, D(PRb, M)) to recover the secret key.

A Hybrid Scheme:

Yet another way to use public-key encryption to distribute secret keys is a hybrid approach.

 This scheme retains the use of a key distribution center (KDC) that shares a secret master

key with each user and distributes secret session keys encrypted with the master key.

 A public key scheme is used to distribute the master keys.

 The addition of a public-key layer provides a secure, efficient means of distributing master

keys.

Distribution of Public Keys:

Several techniques have been proposed for the distribution of public keys, which can mostly

be grouped into the categories shown.

 Public announcement

 Publicly available directory

 Public-key authority

 Public-key certificates

Public Announcement of Public Keys

The point of public-key encryption is that the public key is public, hence any

participant can send his or her public key to any other participant, or broadcast the key to the

community at large. eg. append PGP keys to email messages or post to news groups or email

list

Its major weakness is forgery, anyone could pretend to be user A and send a public key

to another participant or broadcast such a public key. Until the forgery is discovered they can

masquerade as the claimed user.

Publicly Available Directory

 can obtain greater security by registering keys with a public directory

 directory must be trusted with properties:

 The authority maintains a directory with a {name, public key} entry for each

participant.

 Each participant registers a public key with the directory authority.

 A participant may replace the existing key with a new one at any time because the

corresponding private key has been compromised in some way.

 Participants could also access the directory electronically. For this purpose, secure,

authenticated communication from the authority to the participant is mandatory.

This scheme is clearly more secure than individual public announcements but still has

vulnerabilities.

If an adversary succeeds in obtaining or computing the private key of the directory

authority, the adversary could authoritatively pass out counterfeit public keys and

subsequently impersonate any participant and eavesdrop on messages sent to any participant.

Another way to achieve the same end is for the adversary to tamper with the records kept by

the authority.

Public-Key Authority:

 Stronger security for public-key distribution can be achieved by providing tighter control

over the distribution of public keys from the directory.

 It requires users to know the public key for the directory, and that they interact with

directory in real-time to obtain any desired public key securely.

 Totally seven messages are required.

1. A sends a timestamped message to the public-key authority containing a request for the

current public key of B.

2. The authority responds with a message that is encrypted using the authority's private key,

PRauth Thus, A is able to decrypt the message using the authority's public key. Therefore,

A is assured that the message originated with the authority. The message includes the

following:

 B's public key, PUb which A can use to encrypt messages destined for B

 The original request, to enable A to match this response with the corresponding

earlier request and to verify that the original request was not altered before

reception by the authority.

 The original timestamp, so A can determine that this is not an old message from

the authority containing a key other than B's current public key.

3. A stores B's public key and also uses it to encrypt a message to B containing an

identifier of A (IDA) and a nonce (N1), which is used to identify this transaction

uniquely.

4. B retrieves A's public key from the authority in the same manner as A retrieved B's

public key.

5. At this point, public keys have been securely delivered to A and B, and they may

begin their protected exchange. However, two additional steps are desirable:

6. B sends a message to A encrypted with PUa and containing A's nonce (N1) as well

as a new nonce generated by B (N2) Because only B could have decrypted message

(3), the presence of N1 in message (6) assures A that the correspondent is B.

7. A returns N2, encrypted using B's public key, to assure B that its correspondent is A.

Public-Key Certificates

 A user must appeal to the authority for a public key for every other user that it wishes to

contact and it is vulnerable to tampering too.

 Public key certificates can be used to exchange keys without contacting a public-key

authority.

 A certificate binds an identity to public key, with all contents signed by a trusted Public-

Key or Certificate Authority (CA).

 This can be verified by anyone who knows the public-key authorities public-key.

A participant can also convey its key information to another by transmitting its

certificate.

Other participants can verify that the certificate was created by the authority. We can

place the following requirements on this scheme:

1. Any participant can read a certificate to determine the name and public key of the

certificate's owner.

2. Any participant can verify that the certificate originated from the certificate authority

and is not counterfeit.

3. Only the certificate authority can create and update certificates.

4. Any participant can verify the currency of the certificate.

One scheme has become universally accepted for formatting public-key certificates:

the X.509 standard.

X.509 certificates are used in most network security applications, including IP

security, secure sockets layer (SSL), secure electronic transactions (SET), and S/MIME.

 X.509 CERTIFICATES

X.509 is part of the X.500 series of recommendations that define a directory service,

being a server or distributed set of servers that maintains a database of information about

users.

X.509 defines a framework for the provision of authentication services by the X.500

directory to its users. The directory may serve as a repository of public-key certificates. Each

certificate contains the public key of a user and is signed with the private key of a trusted

certification authority. In addition, X.509 defines alternative authentication protocols based on

the use of public-key certificates. X.509 is based on the use of public-key cryptography and

digital signatures.

The X.509 certificate format is widely used, in for example S/MIME, IP Security and

SSL/TLS and SET. X.509 was initially issued in 1988. The standard was subsequently revised

to address some of the security concerns; a revised recommendation was issued in 1993. A

third version was issued in 1995 and revised in 2000.

Certificates

The heart of the X.509 scheme is the public-key certificate associated with each user.

These user certificates are assumed to be created by some trusted certification authority (CA)

and placed in the directory by the CA or by the user. The directory server itself is not

responsible for the creation of public keys or for the certification function; it merely provides

an easily accessible location for users to obtain certificates.

The standard uses the notation for a certificate of:

CA<<A>> where the CA signs the certificate for user A with its private key. In more

detail CA<<A>> = CA {V, SN, AI, CA, UCA, A, UA, Ap, TA}.

If the corresponding public key is known to a user, then that user can verify that a

certificate signed by the CA is valid.

 Version: Differentiates among successive versions of the certificate format; the default is

version 1. If the issuer unique identifier or subject unique identifier are present, the value

must be version 2. If one or more extensions are present, the version must be version 3.

 Serial number: An integer value unique within the issuing CA that is unambiguously

associated with this certificate.

 Signature algorithm identifier: The algorithm used to sign the certificate together with

any associated parameters. Because this information is repeated in the signature field at

the end of the certificate, this field has little, if any, utility.

 Issuer name: X.500 is the name of the CA that created and signed this certificate.

 Period of validity: Consists of two dates: the first and last on which the certificate is

valid.

 Subject name: The name of the user to whom this certificate refers. That is, this

certificate certifies the public key of the subject who holds the corresponding private key.

 Subject’s public-key information: The public key of the subject, plus an identifier of

the algorithm for which this key is to be used, together with any associated parameters.

 Issuer unique identifier: An optional-bit string field used to identify uniquely the

issuing CA in the event the X.500 name has been reused for different entities.

 Subject unique identifier: An optional-bit string field used to identify uniquely the subject in the event the X.500 name has been reused for different entities.

 Extensions: A set of one or more extension fields. Extensions were added in version 3

and are discussed later in this section.

 Signature: Covers all of the other fields of the certificate; it contains the hash code of the

other fields encrypted with the CA’s private key. This field includes the signature

algorithm identifier.

The unique identifier fields were added in version 2 to handle the possible reuse of

subject and/or issuer names over time. These fields are rarely used. The standard uses the

following notation to define a certificate:

CA<<A>> = CA {V, SN, AI, CA, UCA, A, UA, Ap, TA}

where

Y<< X >> = the certificate of user X issued by certification authority Y

Y {I} = the signing of I by Y. It consists of I with an encrypted

hash

code appended

V = version of the certificate

SN = serial number of the certificate

AI = identifier of the algorithm used to sign the

certificate CA = name of certificate authority

UCA = optional unique identifier of the

CA A = name of user A

UA = optional unique identifier of the user

A Ap = public key of user A

TA = period of validity of the certificate

Obtaining a Certificate

User certificates generated by a CA have the following characteristics:

• Any user with access to the public key of the CA can verify the user public key

that was certified.

• No party other than the certification authority can modify the certificate with

out this being detected.

Because certificates are unforgeable, they can be placed in a directory without the need

for the directory to make special efforts to protect them.

If all users subscribe to the same CA, then there is a common trust of that CA. All

user certificates can be placed in the directory for access by all users. In addition, a user can

transmit his or her certificate directly to other users. In either case, once B is in possession of

A’s certificate, B has confidence that messages it encrypts with A’s public key will be secure

from eavesdropping and that messages signed with A’s private key are unforgeable.

CA Hierarchy:

If both parties use the same CA, they know its public key and can verify others

certificates. If there is a large community of users, it may not be practical for all users to

subscribe to the same CA. Hence there has to be some means to form a chain of certifications

between the CA's used by the two parties, by the use of client and parent certificates. All these

certificates of CAs by CAs need to appear in the directory, and the user needs to know how

they are linked to follow a path to another user's public-key certificate. X.509 suggests that

CAs be arranged in a hierarchy so that navigation is straightforward. It is assumed that each

client trusts its parent’s certificates.

Figure 14.15 illustrates the use of an X.509 hierarchy to mutually verify clients

certificates. The connected circles indicate the hierarchical relationship among the CAs; the

associated boxes indicate certificates maintained in the directory for each CA entry. The

directory entry for each CA includes two types of certificates:

Forward certificates: Certificates of X generated by other CAs,

Reverse certificates: Certificates generated by X that are the certificates of other CAs. In

this example, we can track chains of certificates as follows:

A acquires B certificate using chain

X<<W>>W<<V>>V<<Y>>Y<<Z>>Z<>

B acquires A certificate using chain:

Z<<Y>>Y<<V>>V<<W>>W<<X>>X<<A

>>

Certificate Revocation:

A certificate includes a period of validity. Typically a new certificate is issued just

before the expiration of the old one.

In addition, it may be desirable on occasion to revoke a certificate before it expires, for

one of a range of following reasons:

1. The user’s private key is assumed to be compromised.

2. The user is no longer certified by this CA. Reasons for this include that the subject’s

name has changed, the certificate is superseded, or the certificate was not issued in

conformance with the CA’s policies.

3. The CA’s certificate is assumed to be compromised.

To support this, each CA must maintain a list consisting of all revoked but not expired

certificates issued by that CA, known as the certificate revocation list (CRL). Each certificate

revocation list (CRL) posted to the directory is signed by the issuer and includes (as shown in

Figure 14.14b previously) the issuer's name, the date the list was created, the date the next

CRL is scheduled to be issued, and an entry for each revoked certificate. Each entry consists

of the serial number of a certificate and revocation date for that certificate. Because serial

numbers are unique within a CA, the serial number is sufficient to identify the certificate.

When a user receives a certificate in a message, the user must determine whether the

certificate has been revoked, by checking the directory CRL each time a certificate is received,

this often does not happen in practice.

X.509 Version 3

The X.509 version 2 format does not convey all of the information. Rather than

continue to add fields to a fixed format, standards developers felt that a more flexible approach

was needed. X.509 version 3 includes a number of optional extensions that may be added to

the version 2 format. Each extension consists of an extension identifier, a criticality indicator,

and an extension value. The criticality indicator indicates whether an extension can be safely

ignored or not.

Certificate Extensions

The certificate extensions fall into three main categories:

• Key and policy information - convey additional information about the subject and issuer

keys, plus indicators of certificate policy. A certificate policy is a named set of rules that

indicates the applicability of a certificate to a particular community and/or class of

application with common security requirements.

• Subject and issuer attributes - support alternative names, in alternative formats, for a

certificate subject or certificate issuer and can convey additional information about the

certificate subject; eg. postal address, email address, or picture image

• Certification path constraints - allow constraint specifications to be included in

certificates issued for CA’s by other CA’s that may restrict the types of certificates that

can be issued by the subject CA or that may occur subsequently in a certification chain.

PUBLIC-KEY Infrastructure

RFC 4949 (Internet Security Glossary) defines public-key infrastructure (PKI) as

the set of hardware, software, people, policies, and procedures needed to create,

manage, store, distribute, and revoke digital certificates based on asymmetric cryptography. The

principal objective for developing a PKI is to enable secure, convenient, and efficient acquisition

of public keys. The Internet Engineering Task Force (IETF) Public Key Infrastructure X.509

(PKIX) working group has been the driving force behind setting up a formal (and generic) model

based on X.509 that is suitable for deploying a certificate-based architecture on the Internet.

Figure below shows the interrelationship among the key elements of the PKIX model.

Fig: PKIX Architectural Model

The Elements of PKIX Model are:

 End entity: A generic term used to denote end users, devices (e.g., servers, routers), or any

other entity that can be identified in the subject field of a public-key certificate. End

entities typically consume and/or support PKI-related services.

 Certification authority (CA): The issuer of certificates and (usually) certificate revocation

lists (CRLs). It may also support a variety of administrative functions, although these are

often delegated to one or more Registration Authorities.

 Registration authority (RA): An optional component that can assume a number of

administrative functions from the CA. The RA is often associated with the end entity

registration process but can assist in a number of other areas as well.

 CRL issuer: An optional component that a CA can delegate to publish CRLs.

 Repository: A generic term used to denote any method for storing certificates and CRLs

so that they can be retrieved by end entities.

The PKIX Management Functions are:

 Registration: This is the process whereby a user first makes itself known to a CA (directly

or through an RA), prior to that CA issuing a certificate or certificates for that user.

Registration begins the process of enrolling in a PKI. Registration usually involves some

offline or online procedure for mutual authentication. Typically, the end entity is issued

one or more shared secret keys used for subsequent authentication.

 Initialization: Before a client system can operate securely, it is necessary to install key

materials that have the appropriate relationship with keys stored elsewhere in the

infrastructure. For example, the client needs to be securely initialized with the public key

and other assured information of the trusted CA(s), to be used in validating certificate

paths.

 Certification: This is the process in which a CA issues a certificate for a user’s public key,

returns that certificate to the user’s client system, and/or posts that certificate in a

repository.

 Key pair recovery: Key pairs can be used to support digital signature creation and

verification, encryption and decryption, or both. When a key pair is used for

encryption/decryption, it is important to provide a mechanism to recover the necessary

decryption keys when normal access to the keying material is no longer possible, otherwise

it will not be possible to recover the encrypted data. Loss of access to the decryption key

can result from forgotten passwords/PINs, corrupted disk drives, damage to hardware

tokens, and so on. Key pair recovery allows end entities to restore their

encryption/decryption key pair from an authorized key backup facility (typically, the CA

that issued the end entity’s certificate).

 Key pair update: All key pairs need to be updated regularly (i.e., replaced with a new key

pair) and new certificates issued. Update is required when the certificate lifetime expires

and as a result of certificate revocation.

 Revocation request: An authorized person advises a CA of an abnormal situation

requiring certificate revocation. Reasons for revocation include private key compromise,

change in affiliation, and name change.

 Cross certification: Two CAs exchange information used in establishing a cross-certificate.

A cross- certificate is a certificate issued by one CA to another CA that contains a CA

signature key used for issuing certificates.

KERBEROS

Kerberos provides a centralized authentication server whose function is to authenticate

users to servers and servers to users. Kerberos relies exclusively on conventional encryption,

making no use of public-key encryption.

Motivation

A distributed architecture consists of dedicated user workstations (clients) and

distributed or centralized servers. In this environment, there are three approaches to security:

 Rely on each individual client workstation to assure the identity of its user or users

and rely on each server to enforce a security policy based on user identification (ID).

 Require that client systems authenticate themselves to servers, but trust the

client system concerning the identity of its user.

 Require the user to prove his or her identity for each service invoked. Also require

that servers prove their identity to clients.

The following are the requirements for Kerberos:

 Secure: A network eavesdropper should not be able to obtain the necessary

information to impersonate a user. More generally, Kerberos should be strong

enough that a potential opponent does not find it to be the weak link.

 Reliable: For all services that rely on Kerberos for access control, lack of

availability of the Kerberos service means lack of availability of the supported

services. Hence, Kerberos should be highly reliable and should employ distributed

server architecture, with one system able to back up another.

 Transparent: Ideally, the user should not be aware that authentication is taking

place, beyond the requirement to enter a password.

 Scalable: The system should be capable of supporting large numbers of clients and

servers. This suggests a modular, distributed architecture.

To support these requirements, the overall scheme of Kerberos is that of a trusted third-

party authentication service that uses a protocol based on Needham and Schroeder.It is trusted in

the sense that clients and servers trust Kerberos to mediate their mutual authentication. Assuming

the Kerberos protocol is well designed, and then the authentication service is secure if the

Kerberos server itself is secure.

Two versions of Kerberos are in common use. Version 4 and Version

5 Kerberos Version 4

Version 4 of Kerberos makes use of DES, in a rather elaborate protocol, to provide the

authentication service

1.A Simple Authentication Dialogue

In an unprotected network environment, any client can apply to any server for service.

The obvious security risk is that of impersonation. To counter this threat, servers must be able

to confirm the identities of clients who request service. But in an open environment, this

places a substantial burden on each server.

An alternative is to use an authentication server (AS) that knows the passwords of all

users and stores these in a centralized database. In addition, the AS shares a unique secret key

with each server. The simple authentication dialogue is as follows:

1. C >> AS: IDc||Pc||IDv

2. AS >> C: Ticket

3. C >> V: IDc||Ticket

Ticket=

EKv(IDc||ADc||IDv)

C : Client,

AS : Authentication Server,

V : Server, IDc : ID of the

client, Pc : Password of the

client,

ADc : Address of client, IDv : ID of the

server, Kv : secret key shared by AS and V,

|| : concatenation.

2.A More Secure Authentication Dialogue

There are two major problems associated with the previous approach:

 Plaintext transmission of the password.

 Each time a user has to enter the password.

To solve these problems, we introduce a scheme for avoiding plaintext passwords,

and a new server, known as ticket granting server (TGS). The hypothetical scenario is as

follows:

Once per user logon session:-

1. C >> AS: IDc||IDtgs

2. AS >> C: Ekc (Tickettgs)

Once per type of service:

3. C >> TGS: IDc||IDv||Tickettgs

4. TGS >> C: ticketv

Once per service session:

5. C >> V: IDc|| Ticketv

Tickettgs=

Ektgs(IDc||ADc||IDtgs||TS1||Lifetime1)

Ticketv=

Ekv(IDc||ADc||IDv||TS2||Lifetime2)

C: Client, AS: Authentication Server, V: Server,

IDc : ID of the client, Pc:Password of the client, ADc: Address of

client, IDv : ID of the server, Kv: secret key shared by AS and V,

|| : concatenation, IDtgs: ID of the TGS server, TS1, TS2: time stamps,

 lifetime: lifetime of the ticket.

The new service, TGS, issues tickets to users who have been authenticated to AS.

Thus, the user first requests a ticket-granting ticket (Tickettgs) from the AS. The client module

in the user workstation saves this ticket.

Each time the user requires access to a new service, the client applies to the TGS, using

the ticket to authenticate itself. The TGS then grants a ticket for the particular service. The

client saves each service-granting ticket and uses it to authenticate its user to a server each

time a particular service is requested.

Let us look at the details of this scheme:

1. The client requests a ticket-granting ticket on behalf of the user by sending its user's ID

and password to the AS, together with the TGS ID, indicating a request to use the TGS

service

2. The AS responds with a ticket that is encrypted with a key that is derived from the

user's password.

When this response arrives at the client, the client prompts the user for his or her

password, generates the key, and attempts to decrypt the incoming message.

If the correct password is supplied, the ticket is successfully recovered.

Because only the correct user should know the password, only the correct user can

recover the ticket. Thus, we have used the password to obtain credentials from Kerberos

without having to transmit the password in plaintext. Now that the client has a ticket-granting

ticket, access to any server can be obtained with steps 3 and 4:

3. The client requests a service-granting ticket on behalf of the user. For this purpose, the

client transmits a message to the TGS containing the user's ID, the ID of the desired

service, and the ticket-granting ticket

4. The TGS decrypts the incoming ticket and verifies the success of the decryption by the

presence of its ID. It checks to make sure that the lifetime has not expired. Then it

compares the user ID and network address with the incoming information to

authenticate the user. If the user is permitted access to the server V, the TGS issues a

ticket to grant access to the requested service.

The service-granting ticket has the same structure as the ticket-granting ticket. Indeed,

because the TGS is a server, we would expect that the same elements are needed to

authenticate a client to the TGS and to authenticate a client to an application server.

Again, the ticket contains a timestamp and lifetime. If the user wants access to the same

service at a later time, the client can simply use the previously acquired service-granting ticket

and need not bother the user for a password.

Note that the ticket is encrypted with a secret key (Kv) known only to the TGS and the

server, preventing alteration.

Finally, with a particular service-granting ticket, the client can gain access to the

corresponding service with step 5:

5. The client requests access to a service on behalf of the user. For this purpose, the client

transmits a message to the server containing the user's ID and the service-granting

ticket. The server authenticates by using the contents of the ticket.

This new scenario satisfies the two requirements of only one password query per user

session and protection of the user password.

Kerberos V4 Authentication Dialogue Message Exchange

Two additional problems remain in the more secure authentication dialogue:

 Lifetime associated with the ticket granting ticket. If the lifetime is very short,

then the user will be repeatedly asked for a password. If the lifetime is long,

then the opponent has the greater opportunity for replay.

 Requirement for the servers to authenticate themselves to users.

The actual Kerberos protocol version 4 is as follows
:

 A basic third-party authentication scheme

 Have an Authentication Server (AS)

o Users initially negotiate with AS to identify self
o AS provides a non-corruptible authentication credential (ticket

granting ticket TGT)

 Have a Ticket Granting

o Users subsequently request access to other services from TGS on basis
of users TGT

(a) Authentication service exchange: to obtain ticket granting ticket

(1) C → AS : IDC II IDtgs II TS1

(2) AS → C : EKc [Kc,tgs II IDtgs II TS2 II Lifetime2 II Tickettgs]

(b) Ticket-Granting Service Exchange: to obtain service-granting ticket

(3) C → TGS: IDv II Tickettgs II Authenticatorc
(4) TGS → C: EKc,tgs[Kc,y II IDv II TS4 II Ticketv]

Tickettgs = EK,tgs[Kc,tgs II IDC II ADC II IDtgs IITS2 II Lifetime2]

Ticketv = EKv[Kc,v II IDC II ADC II IDv IITS4 II Lifetime4]

AuthenticatorC = EKtgs [IDC II ADC II TS3]

(c) Client/Server Authentication Exchange: to obtain service

(5) C → V : Ticketv II Authenticatorc
(6) V → C: Ekc,v[TS5 +1]

Ticketv = EKv[Kc,v II IDC II ADC II Idv II TS4 II Lifetime4]

Authenticatorc = EKtgs [IDC II ADC II TS3]

Kerberos 4 Overview

Fig 4.1 Overview of Kerberos 4

Kerberos Realms and Multiple Kerberi

A full-service Kerberos environment consisting of a Kerberos server, a number of clients,

and a number of application servers requires the following:

4. The Kerberos server must have the user ID and hashed passwords of all

participating users in its database. All users are registered with the Kerberos server.

5. The Kerberos server must share a secret key with each server. All servers are registered

with the Kerberos server.

Such an environment is referred to as a Kerberos

realm The concept of realm can be explained as

follows.

Fig .Request for service in another Realm

 A Kerberos realm is a set of managed nodes that share the same Kerberos database.

The Kerberos database resides on the Kerberos master computer system, which should be kept in a

physically secure room. A read-only copy of the Kerberos database might also reside on other

Kerberos computer systems.

However, all changes to the database must be made on the master computer system.

Changing or accessing the contents of a Kerberos database requires the Kerberos master

password. A related concept is that of a Kerberos principal, which is a service or user that is

known to the Kerberos system.

Each Kerberos principal is identified by its principal name. Principal names consist of

three parts: a service or user name, an instance name, and a realm name. Networks of clients

and servers under different administrative organizations typically constitute different realms.

That is, it generally is not practical, or does not conform to administrative policy, to

have users and servers in one administrative domain registered with a Kerberos server

elsewhere.

However, users in one realm may need access to servers in other realms, and some

servers may be willing to provide service to users from other realms, provided that those users

are authenticated.

Kerberos provides a mechanism for supporting such inter realm authentication. For two

realms to support inter realm authentication, a third requirement is added:

6. The Kerberos server in each interoperating realm shares a secret key with the

server in the other realm. The two Kerberos servers are registered with each other.

The scheme requires that the Kerberos server in one realm trust the Kerberos server in

the other realm to authenticate its users. Furthermore, the participating servers in the second

realm must also be willing to trust the Kerberos server in the first realm.

The details of the exchanges illustrated in Fig 2are as follows:

C → AS :IDC II IDtgs II TS1

AS → C :EKc[Kc,tgs ii IDtgs II TS2 II Lifetime2 II

Tickettgs C → TGS :IDtgsrem II Tickettgs II Authenticatorc

TGS → C :E Kc,tgs[Kc,tgsrem II IDtgsrem II TS4

II Tickettgsrem C→ TGS rem :IDvrem II Tickettgsrem

II Authenticatorc

TGS rem → C :EKc,tgsrem [Kc,vrem II IDvrem II TS6 II Ticketvrem:

C → Vrem :Ticketvrem IIAuthenticatorc

Differences between Versions 4 and 5

Version 5 is intended to address the limitations of version 4 in two areas:

environmental shortcomings and technical deficiencies.

Environmental shortcomings:

7. Encryption system dependence:

Version 4 requires the use of DES. In version 5, ciphertext is tagged with an encryption

type identifier so that any encryption technique may be used.

8. Internet protocol dependence:

Version 4 requires the use of Internet Protocol (IP) addresses. Version 5 network

addresses are tagged with type and length, allowing any network address type to be used.

9. Message byte ordering:

In version 4, the sender of a message employs a byte ordering of its own choosing and

tags the message to indicate least significant byte in lowest address In version 5, all message

structures are defined using Abstract Syntax Notation One (ASN.1) and Basic Encoding Rules

(BER), which provide an unambiguous byte ordering.

10. Ticket lifetime:

Lifetime values in version 4 are encoded in an 8-bit quantity in units of five minutes. In

version 5, tickets include an explicit start time and end time, allowing tickets with arbitrary

lifetimes.

11. Authentication forwarding:

Version 4 does not allow credentials issued to one client to be forwarded to some other

host and used by some other client. Version 5 provides this capability.

Technical deficiencies in the version 4 protocol:

 Double encryption
 PCBC encryption
 Session keys

 Password attacks

The Version 5 Authentication Dialogue

(a) Authentication Service Exchange: to obtain ticket-granting ticket

(1) C → AS : Options II IDc II Realmc II Times II Nonce1

(2) AS → C : Realmc II IDc II Tickettgs II EKc [Kc,tgs II Times II Nonce1 II Realmtgs II

IDtgs] Tickettgs = EKtgs [Flags II Kc,tgs II Realmc II IDc II ADc II Times]

(b) Ticket – Granting Service Exchange:to obtain service-granting ticket

(3) C → TGS: Optionns II IDv II Times II Nonce1

(4) TGS → C : Realmc II IDc II Ticketv II EKc,tgs[Kc,v II Times II Nonce2 II Realmv

II IDv] Tickettgs = EKtgs[Flags II Kc,tgs II Realmc II IDc II ADc II Times]

Ticketv = Ekv[[Flags II Kc,v II Realmc II IDc II ADc II Times]

Authenticatorc = EKc,tgs[IDc II Realmc II TS1]

(c) Client/Server AUTHENTICATION Exchange: to obtain service

(5) C → V : Options II Ticketv II Authenticatorc

(6) V → C : EKc,v [TS2 II subkey II Seq #]

Ticketv = EKv[Flags II Kc,v II Realmc II IDc II ADc II Times]

Authenticatorc = EKc,v[IDc II Realmc II TS2 II Subkey II Seq#]

First, consider the authentication service exchange. Message (1) is a client request for a

ticket-granting ticket. It includes the ID of the user and the TGS.

The following new elements are added:

 Realm: Indicates realm of user
 Options: Used to request that certain flags be set in the returned ticket
 Times: Used by the client to request the following time settings in the ticket:

o from : the desired start time for the requested ticket
o till : the requested expiration time for the requested ticket
o rtime : requested renew-till time

Nonce: A random value to be repeated in message (2) to assure that the response is fresh and

has not been replaced by an opponent .

Message (2) returns a ticket-granting ticket, identifying information for the client, and a

block encrypted using the encryption key based on the user's password. This block includes the

session key to be used between the client and the TGS, times specified in message (1), the

nonce from message (1), and TGS identifying information.

The ticket itself includes the session key, identifying information for the client, the

requested time values, and flags that reflect the status of this ticket and the requested options.

Let us now compare the ticket-granting service exchange for versions 4 and 5.

We see that message (3) for both versions include an authenticator, a ticket, and the

name of the requested service.

In addition, version 5 includes requested times and options for the ticket and a

nonce, all with functions similar to those of message (1). The authenticator itself is essentially

the same as the one used in version 4.

The authenticator itself is essentially the same as the one used in version 4.

Message (4) has the same structure as message (2), returning a ticket plus information

needed by the client, the latter encrypted with the session key now shared by the client and the

TGS.

Finally, for the client/server authentication exchange, several new features appear in

version 5. In message (5), the client may request as an option that mutual authentication is

required. The authenticator includes several new fields as follows:

 Subkey: The client's choice for an encryption key to be used to protect this specific

application session. If this field is omitted, the session key from the ticket (Kc,v) is

used.

 Sequence number: An optional field that specifies the starting sequence number to

be used by the server for messages sent to the client during this session. Messages

may be sequence numbered to detect replays.

CRYPTOGRAPHY AND NETWORK SECURITY

UNIT 4

WEB SECURITY

Usage of internet for transferring or retrieving the data has got many benefits like speed,

reliability, security etc. Much of the Internet's success and popularity lies in the fact that it is an

open global network. At the same time, the fact that it is open and global makes it not very

secure. The unique nature of the Internet makes exchanging information and transacting business

over it inherently dangerous.

For the exchange of information and for commerce to be secure on any network, especially the

Internet, a system or process must be put in place that satisfies requirements for confidentiality,

access control, authentication, integrity, and non-repudiation. These requirements are achieved

on the Web through the use of encryption and by employing digital signature technology. There

are many examples on the Web of the practical application of encryption. One of the most

important is the SSL protocol.

A summary of types of security threats faced in using the Web is given below:

Web Security Threats:

Table 16.1 provides a summary of the types of security threats faced when using the Web. One way

to group these threats is in terms of passive and active attacks. Passive attacks include

eavesdropping on network traffic between browser and server and gaining access to information on

a Web site that is supposed to be restricted. Active attacks include impersonating another user,

altering messages in transit between client and server, and altering information on a Web site.

Another way to classify Web security threats is in terms of the location of the threat: Web server,

Web browser, and network traffic between browser and server.

SECURE SOCKET LAYER

 Secure Socket Layer (SSL) provides security services between TCP and applications that

use TCP. The Internet standard version is called Transport Layer Service (TLS).

 SSL/TLS provides confidentiality using symmetric encryption and message integrity

using a message authentication code.

 SSL/TLS includes protocol mechanisms to enable two TCP users to determine the

security mechanisms and services they will use.

 Netscape originated SSL.

SSL Architecture

SSL is designed to make use of TCP to provide a reliable end-to-end secure service.

SSL is not a single protocol but rather two layers of protocols, as illustrated in Figure 16.2.

The SSL Record Protocol provides basic security services to various higher-layer protocols. In

particular, the Hypertext Transfer Protocol (HTTP), which provides the transfer service for Web

client/server interaction, can operate on top of SSL. Three higher-layer protocols are defined as

part of SSL: the Handshake Protocol, The Change Cipher Spec Protocol, and the Alert Protocol.

These SSL-specific protocols are used in the management of SSL exchanges.

Two important SSL concepts are the SSL session and the SSL connection, which are defined in

the specification as follows.

 Connection: A connection is a transport (in the OSI layering model definition) that

provides a suitable type of service.Every connection is associated with one session.

 Session: An SSL session is an association between a client and a server. Sessions are

created by the Handshake Protocol. Sessions define a set of cryptographic security

parameters which can be shared among multiple connections..

A session state is defined by the following parameters.

 Session identifier: An arbitrary byte sequence chosen by the server to identify an active

or resumable session state.

 Peer certificate: An X509.v3 certificate of the peer. This element of the state may be

null.

 Compression method: The algorithm used to compress data prior to encryption.

 Cipher spec: Specifies the bulk data encryption algorithm (such as null,AES, etc.) and a

hash algorithm (such as MD5 or SHA-1) used for MAC calculation. It also defines

cryptographic attributes such as the hash_size.

 Master secret: 48-byte secret shared between the client and server.

 Is resumable: A flag indicating whether the session can be used to initiate new

connections.

A connection state is defined by the following parameters

 Server and client random: Byte sequences that are chosen by the server and client for

each connection.

 Server write MAC secret: The secret key used in MAC operations on data sent by the

server.

 Client write MAC secret: The secret key used in MAC operations on data sent by the

client.

 Server write key: The secret encryption key for data encrypted by the server and

decrypted by the client.

 Client write key: The symmetric encryption key for data encrypted by the client and

decrypted by the server.

 Initialization vectors: When a block cipher in CBC mode is used, an initialization vector

(IV) is maintained for each key. This field is first initialized by the SSL Handshake

Protocol.

 Sequence numbers: Each party maintains separate sequence numbers for transmitted

and received messages for each connection.

SSL Record Protocol

The SSL Record Protocol provides two services for SSL connections:

 Confidentiality: The Handshake Protocol defines a shared secret key that is used for

conventional encryption of SSL payloads.

 Message Integrity: The Handshake Protocol also defines a shared secret key that is used

to form a message authentication code (MAC).

Figure 16.3 indicates the overall operation of the SSL Record Protocol. The Record Protocol

takes an application message to be transmitted, fragments the data into manageable blocks,

optionally compresses the data, applies a MAC, encrypts, adds a header, and transmits the

resulting unit in a TCP segment. Received data are decrypted, verified, decompressed, and

reassembled before being delivered to higher-level users.

 The first step is fragmentation. Each upper-layer message is fragmented into blocks of

214 bytes (16384 bytes) or less.

 Next, compression is optionally applied. Compression must be lossless and may not

increase the content length by more than 1024 bytes.1In SSLv3 (as well as the current

version of TLS), no compression algorithm is specified, so the default compression

algorithm is null.

 The next step in processing is to compute a message authentication code over the

compressed data. For this purpose, a shared secret key is used.

 The next step is perform encryption and adds a header

SSL Handshake Protocol

This phase is used to initiate a logical connection between client and server

 It consists of 4 phases

1. Establish Security Capabilities

2. Server Authentication and Key Exchange

3. Client Authentication and Key Exchange

4. Finish

The exchange is initiated by the client, which sends a client_hello message with the

following parameters:

 Version: The highest SSL version understood by the client.

 Random: A client-generated random structure consisting of a 32-bit

timestamp and 28 bytes generated by a secure random number generator.

These values serve as nonces and are used during key exchange to prevent

replay attacks.

 Session ID: A variable-length session identifier. A nonzero value

indicates that the client wishes to update the parameters of an existing

connection or to create a new connection on this session. A zero value

indicates that the client wishes to establish a new connection on a new

session.

 Cipher Suite: This is a list that contains the combinations of

cryptographic algorithms supported by the client, in decreasing order of

preference. Each element of the list (each cipher suite) defines both a key

exchange algorithm and a Cipher Spec; these are discussed subsequently.

 Compression Method: This is a list of the compression methods the client

supports.

Change Cipher Spec Protocol

 The Change Cipher Spec Protocol is one of the three SSL-specific

protocols that use the SSL Record Protocol, and it is the simplest.

 This protocol consists of a single message (Figure 16.5a), which consists

of a single byte with the value 1.

 The sole purpose of this message is to cause the pending state to be

copied into the current state,

Alert Protocol

 The Alert Protocol is used to convey SSL-related alerts to the peer entity

 Each message in this protocol consists of two bytes (Figure 16.5b). The

first byte takes the value warning (1) or fatal (2) to convey the severity

of the message.

 If the level is fatal, SSL immediately terminates the connection

 The second byte contains a code that indicates the specific alert.

Example Alerts

fatal: unexpected message, bad record mac, decompression failure, handshake

failure, illegal parameter

warning: close notify, no certificate, bad certificate, unsupported certificate,

certificate revoked, certificate expired, certificate unknown

unexpected_message: An inappropriate message was received.

bad_record_mac: An incorrect MAC was received.

TRANSPORT LAYER SECURITY

TLS was released in response to the Internet community’s demands for

a standardized protocol. TLS (Transport Layer Security), defined in RFC 2246, is

a protocol for establishing a secure connection between a client and a server.

TLS (Transport Layer Security) is capable of authenticating both the client

and the server and creating a encrypted connection between the two.

Many protocols use TLS (Transport Layer Security) to establish secure

connections, including HTTP, IMAP, POP3, and SMTP.

The TLS Handshake Protocol first negotiates key exchange using an asymmetric

algorithm such as RSA or Diffie- Hellman .

TLS is very similar to SSLv3.

There are some minor differences ranging from protocol version numbers to

generation of key material.

Version Number: The TLS Record Format is the same as that of the SSL

Record Format and the fields in the header have the same meanings. The one

difference is in version values. For the current version of TLS, the Major Version

is 3 and the Minor Version is 3.

Message Authentication Code: Two differences arise one being the actual

algorithm and the other being scope of MAC calculation. TLS makes use of the

HMAC algorithm defined in RFC 2104. SSLv3 uses the same algorithm, except

that the padding bytes are concatenated with the secret key rather than being

XORed with the secret key padded to the block length. For TLS, the MAC

calculation encompasses the fields.

The MAC calculation covers all of the fields covered by the SSLv3

calculation, plus the field TLSCompressed. version, which is the version of the

protocol being employed.

Pseudorandom Function: TLS makes use of a pseudorandom function

referred to as PRF to expand secrets into blocks of data for purposes of

key generation or validation. The PRF is based on the following data

expansion function:

Alert Codes

TLS supports all of the alert codes defined in SSLv3 with the exception of no_certificate

.A number of additional codes is defined in TLS. Some of them are

 record_overflow

 unknown_ca

 access_denied

 protocol_version

 internal_error

 decrypt_error

HTTPS

HTTPS (HTTP over SSL) refers to the combination of HTTP and SSL to implement secure

communication between a Web browser and a Web server. The HTTPS capability is built

into all modern Web browsers. Its use depends on the Web server supporting HTTPS

communication. For example, some search engines do not support HTTPS. Google provides

HTTPS as an option:

https://google.com.

The principal difference seen by a user of a Web browser is that URL (uniform resource

locator) addresses begin with https:// rather than http://. A normal HTTP connection uses port

80. If HTTPS is specified, port 443 is used, which invokes SSL.

When HTTPS is used, the following elements of the communication are encrypted:

• URL of the requested document

• Contents of the document

• Contents of browser forms (filled in by browser user)

• Cookies sent from browser to server and from server to browser

• Contents of HTTP header

HTTPS is documented in RFC 2818, HTTP Over TLS. There is no fundamental change in

using HTTP over either SSL or TLS, and both implementations are

referred to as HTTPS.

Connection Initiation

 For HTTPS, the agent acting as the HTTP client also acts as the TLS client. The client

initiates a connection to the server on the appropriate port and then sends the TLS

ClientHello to begin the TLS handshake. When the TLS handshake has finished, the client

may then initiate the first HTTP request. All HTTP data is to be sent as TLS application data.

Normal HTTP behavior, including retained connections, should be followed.

There are three levels of awareness of a connection in HTTPS. At the HTTP level, an HTTP

client requests a connection to an HTTP server by sending a connection request to the next

lowest layer. Typically, the next lowest layer is TCP, but it also may be TLS/SSL. At the

level of TLS, a session is established between a TLS client and a TLS server. This session

can support one or more connections at any time. As we have seen, a TLS request to establish

a connection begins with the establishment of a TCP connection between the TCP entity on

the client side and the TCP entity on the server side.

Connection Closure

An HTTP client or server can indicate the closing of a connection by including the following

line in an HTTP record: Connection: close. This indicates that the connection will be closed

after this record is delivered. The closure of an HTTPS connection requires that TLS close

the connection with the peer TLS entity on the remote side, which will involve closing the

underlying TCP connection. At the TLS level, the proper way to close a connection is for

each side to use the TLS alert protocol to send a close_notify alert. TLS implementations

must initiate an exchange of closure alerts before closing a connection. A TLS

implementation may, after sending a closure alert, close the connection without waiting for

the peer to send its closure alert, generating an “incomplete close”. Note that an

implementation that does this may choose to reuse the session. This should only be done

when the application knows (typically through detecting HTTP message boundaries) that it

has received all the message data that it cares about.

HTTP clients also must be able to cope with a situation in which the underlying TCP

connection is terminated without a prior close_notify alert and without a Connection: close

indicator. Such a situation could be due to a programming error on the server or a

communication error that causes the TCP

connection to drop. However, the unannounced TCP closure could be evidence of some sort

of attack. So the HTTPS client should issue some sort of security warning when this occurs.

SECURE SHELL (SSH)

Secure Shell (SSH) is a protocol for secure network communications designed to

be relatively simple and inexpensive to implement. The initial version, SSH1 was

focused on providing a secure remote logon facility to replace TELNET and other

remote logon schemes that provided no security. SSH also provides a more

general client/server capability and can be used for such network functions as file

transfer and e-mail. A new version, SSH2, fixes a number of security flaws in the

original scheme.

SSH2 is documented as a proposed standard in IETF RFCs 4250

through 4256. SSH client and server applications are widely

available for most operating systems.

It has become the method of choice for remote login and X tunneling and is

rapidly becoming one of the most pervasive applications for encryption technology

outside of embedded systems.

SSH is organized as three protocols that typically run on top of TCP (Figure 16.8):

1) Transport Layer Protocol: Provides server authentication, data

confidentiality,and data integrity with forward secrecy (i.e., if a key is

compromised during one session, the knowledge does not affect the security of

earlier sessions).The transport layer may optionally provide compression..

Once the connection is established, the client and server exchange data, referred

to as packets, in the data field of a TCP segment. Each packet is in the following

format (Figure 16.10).

• Packet length: Length of the packet in bytes, not including the packet length and MAC

fields.

• Padding length: Length of the random padding field.

• Payload: Useful contents of the packet. Prior to algorithm negotiation, this

field is uncompressed. If compression is negotiated, then in subsequent packets,

this field is compressed.

• Random padding: Once an encryption algorithm has been negotiated this field is added.

 Message authentication code (MAC): If message authentication has been

negotiated, this field contains the MAC value.

2) User Authentication Protocol: Authenticates the user to the server.

Authentication Methods: The server may require one or more of the

following authentication methods

 Public key: The details of this method depend on the public-key algorithm

chosen. In essence, the client sends a message to the server that contains the

client’s public key, with the message signed by the client’s private key. When

the server receives this message, it checks whether the supplied key is

acceptable for authentication and, if so, it checks whether the signature is

correct.

• Password: The client sends a message containing a plaintext password, which

is protected by encryption by the Transport Layer Protocol.

• host based: Authentication is performed on the client’s host rather than the client itself

3) Connection Protocol: Multiplexes multiple logical communications channels

over a single, underlying SSH connection.

Wireless Security

IEEE 802.11 Wireless LAN Overview

IEEE 802 is a committee that has developed standards for a wide range of local area networks

(LANs). In 1990, the IEEE 802 Committee formed a new working group, IEEE 802.11, with

a charter to develop a protocol and transmission specifications for wireless LANs (WLANs).

Since that time, the demand for WLANs, at different frequencies and data rates, has

exploded. Keeping pace with this demand, the IEEE 802.11 working group has issued

an ever-expanding list of standards.

Wi-Fi Alliance

• 802.11b first broadly accepted standard

• Wireless Ethernet Compatibility Alliance (WECA) industry consortium formed 1999

– to assist interoperability of products

– renamed Wi-Fi (Wireless Fidelity) Alliance

– created a test suite to certify interoperability

– initially for 802.11b, later extended to 802.11g

– concerned with a range of WLANs markets, including enterprise, home, and hot spots

IEEE 802 Protocol Architecture

IEEE 802.11 standards are defined within the structure of a layered set of protocols.

This structure, used for all IEEE 802 standards, is illustrated in Figure. The lowest layer of

the IEEE 802 reference model is the physical layer, which includes such functions as

encoding/decoding of signals and bit transmission/reception. In addition, the physical

layer includes a specification of the transmission medium. In the case of IEEE 802.11, the

physical layer also defines frequency bands and antenna characteristics.

The media access control (MAC) layer, which controls access to the transmission medium to

provide an orderly and efficient use of that capacity. The MAC layer receives data from a

higher layer protocol, typically the Logical Link Control (LLC) layer, in the form of a

block of data known as the MAC service data unit (MSDU). The exact format of the

MPDU differs somewhat for the various MAC protocols in use.

In most data link control protocols, the data link protocol entity is responsible not

only for detecting errors using the CRC, but for recovering from those errors by

retransmitting damaged frames. In the LAN protocol architecture, these two functions are

split between the MAC and LLC layers. The MAC layer is responsible for detecting errors

and discarding any frames that contain errors. The LLC layer optionally keeps track of which

frames have been successfully received and retransmits unsuccessful frames.

IEEE 802.11 Network Components and Architectural Model

Figure illustrates the model developed by the 802.11 working group. The smallest building

block of a wireless LAN is a basic service set (BSS), which consists of wireless

stations executing the same MAC protocol and competing for access to the same

shared wireless medium.

A BSS may be isolated or it may connect to a backbone distribution system (DS)

through an access point (AP). The AP functions as a bridge and a relay point. In a BSS, client

stations do not communicate directly with one another. Rather the MAC frame is first sent

from the originating station to the AP, and then from the AP to the destination station.

Similarly, a MAC frame from a station in the BSS to a remote station is sent from the local

station to the AP and then relayed by the AP over the DS on its way to the destination station.

The BSS generally corresponds to what is referred to as a cell.

The DS can be a switch, a wired network, or a wireless network. When all the stations

in the BSS are mobile stations that communicate directly with one another, not using an AP,

the BSS is called an independent BSS (IBSS). An IBSS is typically an ad hoc network. In an

IBSS, the stations all communicate directly, and no AP is involved. A simple configuration

is shown in above Figure 5.3, in which each station belongs to a single BSS; that is, each

station is within wireless range only of other stations within the same BSS. It is also possible

for two BSSs to overlap geographically, so that a single station could participate in more than

one BSS. Further, the association between a station and a BSS is dynamic. Stations may turn

off, come within range, and go out of range. An extended service set (ESS) consists of two

or more basic service sets interconnected by a distribution system. The extended service set

appears as a single logical LAN to the logical link control (LLC) level.

IEEE 802.11 Services

IEEE 802.11 defines nine services that need to be provided by the wireless LAN to

achieve functionality equivalent to that which is inherent to wired LANs. Table 5.1 lists the

services & notes two ways of categorizing them.

1. The service provider can be either the station or the DS. Station services are

implemented in every 802.11 station, including AP stations. Distribution services are

provided between BSSs; these may be implemented in an AP or in another special-

purpose device attached to the distribution system.

2. Three of the services are used to control IEEE 802.11 LAN access and

confidentiality. Six of the services are used to support delivery of MSDUs between

stations. If the MSDU is too large to be transmitted in a single MPDU, it may be

fragmented and transmitted in a series of MPDUs.

MSDU delivery, which is the basic service, has already been mentioned. Distribution

is the primary service used by stations to exchange MPDUs when the MPDUs must traverse

the DS to get from a station in one BSS to a station in another BSS. Integration enables

transfer of data between a station on an IEEE 802.11 LAN and a station on an integrated

(wired) IEEE 802.x LAN. To deliver a message within a DS, the distribution service

needs to know where the destination station is located. Association establishes an initial

association between a station and an AP. Reassociation enables an established association

to be transferred from one AP toanother, allowing a mobile station to move from one

BSS to another. Disassociation is a notification from either a station or an AP that an

existing association is terminated.

IEEE 802.11 Wireless LAN Security :

The differences between wired and wireless LANs (in that wireless traffic can be monitored

by any radio in range, and need not be physically connected) suggest the increased need for

robust security services and mechanisms for wireless LANs.

The original 802.11 specification included a set of security features for privacy and

authentication that were quite weak. For privacy, 802.11 defined the Wired Equivalent

Privacy (WEP) algorithm. The privacy portion of the 802.11 standard contained major

weaknesses. Subsequent to the development of WEP, the 802.11i task group has developed

a set of capabilities to address the WLAN security issues. In order to accelerate the

introduction of strong security into WLANs, the Wi-Fi Alliance promulgated Wi-Fi Protected

Access (WPA) as a Wi-Fi standard. WPA is a set of security mechanisms that eliminates

most 802.11 security issues and was based on the current state of the 802.11i standard.

The final form of the 802.11i standard is referred to as Robust Security Network (RSN). The

Wi-Fi Alliance certifies vendors in compliance with the full 802.11i specification

under the WPA 2 program.

802.11i Phases of Operation

The operation of an IEEE 802.11i RSN can be broken down into five distinct phases

of operation, as shown in Figure 5.5. One new component is the authentication server (AS).

The five phase are:

 • Discovery: An AP uses messages called Beacons and Probe Responses to advertise its

IEEE802.11i security policy. The STA uses these to identify an AP for a WLAN with which

it wishes to communicate. The STA associates with the AP, which it uses to select the cipher

suite and authentication mechanism when the Beacons and Probe Responses present a choice.

 • Authentication: During this phase, the STA and AS prove their identities to each other. The

AP blocks non-authentication traffic between the STA and AS until the authentication

transaction is successful. The AP does not participate in the authentication transaction other

than forwarding traffic between the STA and AS.

• Key generation and distribution: The AP and the STA perform several operations that cause

cryptographic keys to be generated and placed on the AP and the STA. Frames are exchanged

between the AP and STA only

 • Protected data transfer: Frames are exchanged between the STA and the end station

through the AP. As denoted by the shading and the encryption module icon, secure data

transfer occurs between the STA and the AP only; security is not provided end-to-end.

 • Connection termination: The AP and STA exchange frames. During this phase, the secure

connection is torn down and the connection is restored to the original state.

Fig IEEE 802.11i Phases of Operation: Capability Discovery, Authentication & Association

The purpose of this phase is for an STA and an AP to recognize each other, agree on a set of

security capabilities, and establish an association for future communication using those

security capabilities (Confidentiality and MPDU integrity protocols for protecting

unicast traffic,Authentication method, Cryptography key management approach).

Confidentiality and integrity protocols for protecting multicast/broadcast traffic are dictated

by the AP, since all STAs in a multicast group must use the same protocols and ciphers.

The specification of a protocol, along with the chosen key length (if variable) is known

as a cipher suite. The options for the confidentiality and integrity cipher suite are as

follows: WEP, with either a 40-bit or 104-bit key (for backward compatibility), TKIP,

CCMP, vendor-specific methods. The options for the authentication and key

management (AKM) suite are: IEEE 802.1X, pre-shared key, vendor-specific methods).

The discovery phase consists of three exchanges: Network and security capability

discovery, Open system authentication, and Association.

The authentication phase enables mutual authentication between an STA and an

authentication server (AS) located in the DS. Authentication is designed to allow only

authorized stations to use the network and to provide the STA with assurance that it is

communicating with a legitimate network. The lower part of above Figure 5.6 shows the

IEEE 802.11 MPDU exchange for this network. The lower part of above Figure 5.6 shows

the IEEE 802.11 MPDU exchange for this phase.

802.11i Key Management Phase

Note from Figure that the AP controlled port is still blocked to general user traffic. Although

the authentication is successful, the ports remain blocked until the temporal keys are installed

in the STA and AP, which occurs during the 4-Way Handshake. During the key management

phase, a variety of cryptographic keys are generated and distributed to STAs. There are two

types of keys: pairwise keys, used for communication between an STA and an AP;

and group keys, for multicast communication. Figure 5.8 shows the two key hierarchies.

Pairwise keys are used for communication between a pair of devices, typically between

an STA and an AP. These keys form a hierarchy, beginning with a master key from which

other keys are derived dynamically and used for a limited period of time. A pre-shared key

(PSK) is a secret key shared by the AP and a STA, and installed in some fashion outside

the scope of IEEE 802.11i.

The other alternative is the master session key (MSK), also known as the AAAK,

which is generated using the IEEE 802.1X protocol during the authentication phase, as

described previously. The pairwise master key (PMK) is derived from the master key as

follows:

If a PSK is used, then the PSK is used as the PMK; if a MSK is used, then the PMK

is derived from the MSK by truncation (if necessary). By the end of the authentication

phase (on EAP Success message), both the AP and the STA have a copy of their shared

PMK. The PMK is used to generate the pairwise

transient key (PTK), which in fact consists of three keys to be used for communication

between an STA and AP after they have mutually authenticated. To derive the PTK, the

PMK, the MAC addresses of the STA and AP, and nonces generated when needed are all

input to the HMAC-SHA-1 function. Group keys are used for multicast communication

when one STA sends MPDU's to multiple STAs.

802.11i Key Management Phase

The upper part of Figure shows the MPDU exchange for distributing pairwise keys.

This exchange is known as the 4-way handshake. The STA and SP use this handshake to

confirm the existence of the PMK, verify the selection of the cipher suite, and derive a

fresh PTK for the following data session.

For group key distribution, the AP generates a GTK and distributes it to each STA in a

multicast group

UNIT 5

CRYPTOGRAPHY AND NETWORK SECURITY

ELECTRONIC MAIL SECURITY

The protection of email from unauthorized access and inspection is known as electronic privacy. There are

mainly two methods for proving security for electronic mails

 Pretty Good Privacy

 S/MIME

Pretty Good Privacy:

In virtually all distributed environments, electronic mail is the most heavily used network based application.

Introduction:

 PGP is data encryption and decryption computer program that provides privacy (Confidentiality) and

authentication for data communication.

 It was created by Phil Zimmermann in 1991

Use of PGP:

 It is used in Electronic mail

 File storage applications.

 PGP is an open-source, freely available software package for e-mail security. It provides authentication

through the use of digital signature, confidentiality through the use of symmetric block encryption,

compression using the ZIP algorithm, and e-mail compatibility using the radix-64 encoding scheme.

 PGP incorporates tools for developing a public-key trust model and public-key certificate management

PGP has grown explosively and is now widely used, because of following reasons:

1. It is available free worldwide in versions that run on a variety of platforms, including Windows, UNIX,

Macintosh, and many more. In addition, the commercial version satisfies users who want a product that

comes with vendor support.

2. It is based on algorithms that have survived extensive public review and are considered extremely secure.

Specifically, the package includes RSA, DSS, and Diffie-Hellman for public-key encryption; CAST-128,

IDEA, and 3DES for symmetric encryption; and SHA-1 for hash coding.

3. It has a wide range of applicability, from corporations that wish to select and enforce a standardized

scheme for encrypting files and messages to individuals who wish to communicate securely with others

worldwide over the Internet and other networks.

4. It was not developed by, nor is it controlled by, any governmental or standards organization. For those

with an instinctive distrust of “the establishment,” this makes PGP attractive.

NOTATIONS

The following symbols are used in PGP

http://en.wikipedia.org/wiki/Email

PGP SERVICES

1) authentication

2) confidentiality

3) compression

4) e-mail compatibility

Providing authentication by using PGP:

The sequence steps for providing authentication by using PGP

Function Algorithms Used Description

Digital

signature

DSS/SHA or RSA/SHA A hash code of a message is created using SHA-

1.This message digest is encrypted using DSS or

RSA with the sender’s private

key and included with the message.

Message

encryption

CAST or IDEA or Three-key

Triple DES with Diffie-

Hellman

or RSA

A message is encrypted using CAST-128 or

IDEA or 3DES with a one-time session key

generated by the sender. The session key is

encrypted using Diffie-Hellman or RSA with the

recipient’s public key and included with

the message.

Compression ZIP A message may be compressed for storage or

transmission using ZIP.

E-mail

compatibility

Radix-64 conversion To provide transparency for e-mail applications,

an encrypted message may be converted to an

ASCII string using radix-64

conversion.

1. The sender creates a message.

2. SHA-1 is used to generate a 160-bit hash code of the message.

3. The hash code is encrypted with RSA using the sender’s private key, and the result is prepended to the

message.

4. The receiver uses RSA with the sender’s public key to decrypt and recover the hash code.

5. The receiver generates a new hash code for the message and compares it with the decrypted hash

code. If the two match, the message is accepted as authentic.

Confidentiality by using PGP

Steps for providing confidentiality:

1. The sender generates a message and a random 128-bit number to be used as a session key for this message

only.

2. The message is encrypted using CAST-128 (or IDEA or 3DES) with the session key.

3. The session key is encrypted with RSA using the recipient’s public key and is prepended to the message.

4. The receiver uses RSA with its private key to decrypt and recover the session key.

5. The session key is used to decrypt the message.

PGP for both authentication and confidentiality:

COMPRESSION

As a default, PGP compresses the message after applying the signature but before Encryption. This has the benefit

of saving space both for e-mail transmission and for file storage.

The signature is generated before compression for two reasons

 so can store uncompressed message & signature for later verification

 Message encryption is applied after compression to strengthen cryptographic security. Because the

compressed message has less redundancy than the original plaintext, cryptanalysis is more difficult.

PGP uses ZIP compression algorithm

E-MAIL COMPATIBILITY

When PGP is used, at least part of the block to be transmitted is encrypted. If only the signature service is used,

then the message digest is encrypted (with the sender’s private key). If the confidentiality service is used, the

message plus signature (if present) are encrypted (with a one- time symmetric key).Thus, part or the entire resulting

block consists of a stream of arbitrary 8-bit octets.

However, many electronic mail systems only permit the use of blocks consisting of ASCII text. To accommodate

this restriction, PGP provides the service of converting the raw 8-bit binary stream to a stream of printable ASCII

characters.

The scheme used for this purpose is radix-64 algorithm

 It maps 3 bytes to 4 printable chars

 It also appends a CRC to detect transmission errors PGP also

segments messages if too big

PGP Operation – Summary

S/MIME

 Secure/Multipurpose Internet Mail Extension is a security enhancement to the MIME internet email

standard.

 S/MIME is for industry standard for commercial and organizational use.

 It defined in number of documents that is RFC 2630, RFC 2632, RFC 2633

E-mail format standard, RFC 822, which is still in common use. The most recent version of this format

specification is RFC 5322 (Internet Message Format).

RFC 5322 (Internet Message Format).

RFC 5322 defines a format for text messages that are sent using electronic mail. It has been the standard for

Internet-based text mail messages and remains in common use.

Message Structure

 A message consists of some number of header lines (the header) followed by unrestricted text (the body).

 A header line usually consists of a keyword, followed by a colon, followed by the keyword’s

arguments

Multipurpose Internet Mail Extensions:

Multipurpose Internet Mail Extension (MIME) is an extension to the RFC 5322 framework that is intended to

address some of the problems and limitations of the use of Simple Mail Transfer Protocol (SMTP).

The following are limitations of the SMTP/5322 scheme.

1. SMTP cannot transmit executable files or other binary objects. A number of schemes are in use for

converting binary files into a text form that can be used by SMTP mail systems.

2. SMTP cannot transmit text data that includes national language characters, because these are represented

by 8-bit codes, and SMTP is limited to 7-bit ASCII.

3. SMTP servers may reject mail message over a certain size.

4. SMTP gateways that translate between ASCII and the character code EBCDIC do not use a consistent set

of mappings, resulting in translation problems.

5. SMTP gateways to X.400 electronic mail networks cannot handle non-textual data included in X.400

messages.

6. Some SMTP implementations do not adhere completely to the SMTP standards defined in RFC 821.

Common problems include:

a. Deletion, addition, or reordering of carriage return and linefeed

b. Truncating or wrapping lines longer than 76 characters

c. Removal of trailing white space (tab and space characters)

d. Padding of lines in a message to the same length

e. Conversion of tab characters into multiple space characters

MIME is intended to resolve these problems in a manner that is compatible with existing RFC 5322

implementations. The specification is provided in RFCs 2045 through 2049.

MIME has 5 header fields

The five header fields defined in MIME are

1. MIME-Version: Must have the parameter value 1.0.

2. Content-Type: Describes the data contained in the body with sufficient detail that the receiving user agent

can pick an appropriate agent or mechanism to represent the data to the user

3. Content-Transfer-Encoding: Indicates the type of transformation that has been used to represent the

body of the message in a way that is acceptable for mail transport.

4. Content-ID: Used to identify MIME entities uniquely in multiple contexts.

5. Content-Description: A text description of the object with the body; this is useful when the object is not

readable (e.g., audio data).

Mime Content Types

Describes the data contained in the body with sufficient detail

S/MIME Functionality

In terms of general functionality, S/MIME is very similar to PGP. Both offer the ability to sign and/or encrypt

messages. In this subsection, we briefly summarize S/MIME capability.

S/MIME provides the following functions.

 Enveloped data: This consists of encrypted content of any type and encrypted-content encryption keys for

one or more recipients.

 Signed data: A digital signature is formed by taking the message digest of the content to be signed and

then encrypting that with the private key of the signer. The content plus signature are then encoded using

base64 encoding. A signed data message can only be viewed by a recipient with S/MIME capability.

o encoded (message + signed digest)

 Clear-signed data: As with signed data, a digital signature of the content is formed. However, in this

case, only the digital signature is encoded using base64.As a result, recipients without S/MIME capability

can view the message content, although they cannot verify the signature.

 clear text message + encoded (signed digest) Signed and enveloped data: Signed-only and encrypted-

only entities may be nested, so that encrypted data may be signed and signed data or clear-signed data may

be encrypted.

o nesting of signed & encrypted entities

CRYPTOGRAPHIC ALGORITHMS

S/MIME uses the following terminology taken from RFC 2119 (Key Words for use in RFCs to Indicate

Requirement Levels) to specify the requirement level:

 MUST: The definition is an absolute requirement of the specification. An implementation must include

this feature or function to be in conformance with the specification.

 SHOULD: There may exist valid reasons in particular circumstances to ignore this feature or function, but

it is recommended that an implementation include the feature or function.

S/MIME incorporates three public-key algorithms. The Digital Signature Standard (DSS) is the preferred algorithm

for digital signature.

IP SECURITY

IP-level security encompasses three functional areas: authentication, confidentiality, and key

management. The authentication mechanism assures that a received packet was, in fact, transmitted

by the party identified as the source in the packet header. In addition, this mechanism assures that the

packet has not been altered in transit. The confidentiality facility enables communicating nodes to

encrypt messages to prevent eavesdropping by third parties. The key management facility is

concerned with the secure exchange of keys.

IP Security Overview:

The IP security capabilities were designed to be used for both with the current IPv4 and the future IPv6

protocols.

Applications of IPSec:

IPSec provides the capability to secure communications across a LAN, across private and public

WANs, and across the Internet. Examples of its use include the following:

 Secure branch office connectivity over the Internet: A company can build a secure virtual

private network over the Internet or over a public WAN. This enables a business to rely

heavily on the Internet and reduce its need for private networks, saving costs and network

management overhead.

 Secure remote access over the Internet: An end user whose system is equipped with IP

security protocols can make a local call to an Internet service provider (ISP) and gain secure

access to a company network. This reduces the cost of toll charges for traveling employees

and telecommuters.

 Establishing extranet and intranet connectivity with partners: IPSec can be used to

secure communication with other organizations, ensuring authentication and confidentiality

and providing a key exchange mechanism.

 Enhancing electronic commerce security: Even though some Web and electronic

commerce applications have built-in security protocols, the use of IPSec enhances that

security.

The principal feature of IPSec that enables it to support these varied applications is that it can encrypt

and/or authenticate all traffic at the IP level. Thus, all distributed applications, including remote

logon, client/server, e-mail, file transfer, Web access, and so on, can be secured.

Figure 1.1 is a typical scenario of IPSec usage. An organization maintains LANs at dispersed

locations. Nonsecure IP traffic is conducted on each LAN. For traffic offsite, through some sort of

private or public WAN, IPSec protocols are used. These protocols operate in networking devices,

such as a router or firewall, that connect each LAN to the outside world. The IPSec networking

device will typically encrypt and compress all traffic going into the WAN, and decrypt and

decompress traffic coming from the WAN; these operations are transparent to workstations and

servers on the LAN. Secure transmission is also possible with individual users who dial into the

WAN. Such user workstations must implement the IPSec protocols to provide security.

Figure 1.1. An IP Security Scenario

Benefits of IPSec:

The following are the benefits of IPSec:

 When IPSec is implemented in a firewall or router, it provides strong security that can be

applied to all traffic crossing the perimeter. Traffic within a company or workgroup does not

incur the overhead of security-related processing.

 IPSec in a firewall is resistant to bypass if all traffic from the outside must use IP, and the

firewall is the only means of entrance from the Internet into the organization.

 IPSec is below the transport layer (TCP, UDP) and so is transparent to applications. There is

no need to change software on a user or server system when IPSec is implemented in the

firewall or router. Even if IPSec is implemented in end systems, upper-layer software,

including applications, is not affected.

 IPSec can be transparent to end users. There is no need to train users on security mechanisms,

issue keying material on a per-user basis, or revoke keying material when users leave the

organization.

 IPSec can provide security for individual users if needed. This is useful for offsite workers

and for setting up a secure virtual subnetwork within an organization for sensitive

applications.

Routing Applications:

In addition to supporting end users and protecting premises systems and networks, IPSec can play a

vital role in the routing architecture required for internetworking. [HUIT98] lists the following

examples of the use of IPSec. IPSec can assure that

 A router advertisement (a new router advertises its presence) comes from an authorized

router

 A neighbor advertisement (a router seeks to establish or maintain a neighbor relationship with

a router in another routing domain) comes from an authorized router.

 A redirect message comes from the router to which the initial packet was sent.

 A routing update is not forged.

Without such security measures, an opponent can disrupt communications or divert some traffic.

Routing protocols such as OSPF should be run on top of security associations between routers that

are defined by IPSec.

IP Security Architecture:

The IPSec specification has become quite complex. To get a feel for the overall architecture, we

begin with a look at the documents that define IPSec. Then we discuss IPSec services and introduce

the concept of security association.

IPSec Documents:

The IPSec specification consists of numerous documents. The most important of these, issued in

November of 1998, are RFCs 2401, 2402, 2406, and 2408:

 RFC 2401: An overview of a security architecture

 RFC 2402: Description of a packet authentication extension to IPv4 and IPv6

 RFC 2406: Description of a packet encryption extension to IPv4 and IPv6

 RFC 2408: Specification of key management capabilities

Support for these features is mandatory for IPv6 and optional for IPv4. In both cases, the security

features are implemented as extension headers that follow the main IP header. The extension header

for authentication is known as the Authentication header; that for encryption is known as the

Encapsulating Security Payload (ESP) header.

In addition to these four RFCs, a number of additional drafts have been published by the IP Security

Protocol Working Group set up by the IETF. The documents are divided into seven groups, as

depicted in Figure 1.2 (RFC 2401).

 Architecture: Covers the general concepts, security requirements, definitions, and

mechanisms defining IPSec technology.

 Encapsulating Security Payload (ESP): Covers the packet format and general issues

related to the use of the ESP for packet encryption and, optionally, authentication.

 Authentication Header (AH): Covers the packet format and general issues related to the use

of AH for packet authentication.

 Encryption Algorithm: A set of documents that describe how various encryption algorithms

are used for ESP.

Figure 1.2. IPSec Document Overview

 Authentication Algorithm: A set of documents that describe how various authentication

algorithms are used for AH and for the authentication option of ESP.

 Key Management: Documents that describe key management schemes.

 Domain of Interpretation (DOI): Contains values needed for the other documents to relate

to each other. These include identifiers for approved encryption and authentication

algorithms, as well as operational parameters such as key lifetime.

IPSec Services:

IPSec provides security services at the IP layer by enabling a system to select required security

protocols, determine the algorithm(s) to use for the service(s), and put in place any cryptographic

keys required to provide the requested services. Two protocols are used to provide security: an

authentication protocol designated by the header of the protocol, Authentication Header (AH); and a

combined encryption/authentication protocol designated by the format of the packet for that protocol,

Encapsulating Security Payload (ESP). The services are

 Access control

 Connectionless integrity

 Data origin authentication

 Rejection of replayed packets (a form of partial sequence integrity)

 Confidentiality (encryption)

 Limited traffic flow confidentiality

Table 1.1 shows which services are provided by the AH and ESP protocols. For ESP, there are two

cases: with and without the authentication option. Both AH and ESP are vehicles for access control,

based on the distribution of cryptographic keys and the management of traffic flows relative to these

security protocols.

Table 1.1. IPSec Services

Security Associations:

A key concept that appears in both the authentication and confidentiality mechanisms for IP is the

security association (SA). An association is a one-way relationship between a sender and a

receiver that affords security services to the traffic carried on it. If a peer relationship is needed,

for two-way secure exchange, then two security associations are required. Security services are

afforded to an SA for the use of AH or ESP, but not both.

A security association is uniquely identified by three parameters:

Security Parameters Index (SPI): A bit string assigned to this SA and having local significance only.

The SPI is carried in AH and ESP headers to enable the receiving system to select the SA under

which a received packet will be processed.

IP Destination Address: Currently, only unicast addresses are allowed; this is the address of the

destination endpoint of the SA, which may be an end user system or a network system such as a

firewall or router.

Security Protocol Identifier: This indicates whether the association is an AH or ESP security

association.

Hence, in any IP packet, the security association is uniquely identified by the Destination Address in

the IPv4 or IPv6 header and the SPI in the enclosed extension header (AH or ESP).

SA Parameters:

In each IPSec implementation, there is a nominal Security Association Database that defines the

parameters associated with each SA. A security association is normally defined by the following

parameters:

 Sequence Number Counter: A 32-bit value used to generate the Sequence Number field in

AH or ESP headers.

 Sequence Counter Overflow: A flag indicating whether overflow of the Sequence Number

Counter should generate an auditable event and prevent further transmission of packets on

this SA (required for all implementations).

 Anti-Replay Window: Used to determine whether an inbound AH or ESP packet is a replay.

 AH Information: Authentication algorithm, keys, key lifetimes, and related parameters

being used with AH (required for AH implementations).

 ESP Information: Encryption and authentication algorithm, keys, initialization values, key

lifetimes, and related parameters being used with ESP (required for ESP implementations).

 Lifetime of This Security Association: A time interval or byte count after which an SA

must be replaced with a new SA (and new SPI) or terminated, plus an indication of which of

these actions should occur (required for all implementations).

 IPSec Protocol Mode: Tunnel, transport, or wildcard (required for all implementations).

 Path MTU: Any observed path maximum transmission unit (maximum size of a packet that

can be transmitted without fragmentation) and aging variables (required for all

implementations).

The key management mechanism that is used to distribute keys is coupled to the authentication and

privacy mechanisms only by way of the Security Parameters Index. Hence, authentication and

privacy have been specified independent of any specific key management mechanism.

SA Selectors:

IPSec provides the user with considerable flexibility in the way in which IPSec services are applied to

IP traffic. SAs can be combined in a number of ways to yield the desired user configuration.

Furthermore, IPSec provides a high degree of granularity in discriminating between traffic that is

afforded IPSec protection and traffic that is allowed to bypass IPSec, in the former case relating IP

traffic to specific SAs.

The means by which IP traffic is related to specific SAs (or no SA in the case of traffic allowed to

bypass IPSec) is the nominal Security Policy Database (SPD). In its simplest form, an SPD contains

entries, each of which defines a subset of IP traffic and points to an SA for that traffic. In more

complex environments, there may be multiple entries that potentially relate to a single SA or multiple

SAs associated with a single SPD entry. The reader is referred to the relevant IPSec documents for a

full discussion.

Each SPD entry is defined by a set of IP and upper-layer protocol field values, called selectors. In

effect, these selectors are used to filter outgoing traffic in order to map it into a particular SA.

Outbound processing obeys the following general sequence for each IP packet:

 Compare the values of the appropriate fields in the packet (the selector fields) against the

SPD to find a matching SPD entry, which will point to zero or more SAs.

 Determine the SA if any for this packet and its associated SPI.

 Do the required IPSec processing (i.e., AH or ESP processing).

The following selectors determine an SPD entry:

 Destination IP Address: This may be a single IP address, an enumerated list or range of

addresses, or a wildcard (mask) address. The latter two are required to support more than one

destination system sharing the same SA (e.g., behind a firewall).

 Source IP Address: This may be a single IP address, an enumerated list or range of

addressee, or a wildcard (mask) address. The latter two are required to support more than one

source system sharing the same SA (e.g., behind a firewall).

 User ID: A user identifier from the operating system. This is not a field in the IP or upper-

layer headers but is available if IPSec is running on the same operating system as the user.

 Data Sensitivity Level: Used for systems providing information flow security (e.g., Secret or

Unclassified).

 Transport Layer Protocol: Obtained from the IPv4 Protocol or IPv6 Next Header field.

This may be an individual protocol number, a list of protocol numbers, or a range of protocol

numbers.

 Source and Destination Ports: These may be individual TCP or UDP port values, an

enumerated list of ports, or a wildcard port.

Authentication Header:

The Authentication Header provides support for data integrity and authentication of IP packets. The

data integrity feature ensures that undetected modification to a packet's content in transit is not

possible. The authentication feature enables an end system or network device to authenticate the user

or application and filter traffic accordingly; it also prevents the address spoofing attacks observed in

today's Internet. The AH also guards against the replay attack.

Authentication is based on the use of a message authentication code (MAC), hence the two parties

must share a secret key.

Figure 1.3 IPSec Authentication Header

The Authentication Header consists of the following fields (Figure 1.3):

 Next Header (8 bits): Identifies the type of header immediately following this header.

 Payload Length (8 bits): Length of Authentication Header in 32-bit words, minus 2. For

example, the default length of the authentication data field is 96 bits, or three 32-bit words.

With a three-word fixed header, there are a total of six words in the header, and the Payload

Length field has a value of 4.

 Reserved (16 bits): For future use.

 Security Parameters Index (32 bits): Identifies a security association.

 Sequence Number (32 bits): A monotonically increasing counter value, discussed later.

 Authentication Data (variable): A variable-length field (must be an integral number of 32-

bit words) that contains the Integrity Check Value (ICV), or MAC, for this packet, discussed

later.

Anti-Replay Service:

A replay attack is one in which an attacker obtains a copy of an authenticated packet and later

transmits it to the intended destination. The receipt of duplicate, authenticated IP packets may disrupt

service in some way or may have some other undesired consequence. The Sequence Number field is

designed to thwart such attacks

When a new SA is established, the sender initializes a sequence number counter to 0. Each time that

a packet is sent on this SA, the sender increments the counter and places the value in the Sequence

Number field. Thus, the first value to be used is 1. If anti-replay is enabled (the default), the sender

must not allow the sequence number to cycle past 2 32 - 1 back to zero. Otherwise, there would be

multiple valid packets with the same sequence number. If the limit of 2 32 -1 is reached, the sender

should terminate this SA and negotiate a new SA with a new key.

Because IP is a connectionless, unreliable service, the protocol does not guarantee that packets will be

delivered in order and does not guarantee that all packets will be delivered. Therefore, the IPSec

authentication document dictates that the receiver should implement a window of size W, with a

default of W = 64. The right edge of the window represents the highest sequence number, N, so far

received for a valid packet. For any packet with a sequence number in the range from N - W + 1 to N

that has been correctly received (i.e., properly authenticated), the corresponding slot in the window is

marked (Figure 1.4). Inbound processing proceeds as follows when a packet is received:

 If the received packet falls within the window and is new, the MAC is checked. If the packet

is authenticated, the corresponding slot in the window is marked.

 If the received packet is to the right of the window and is new, the MAC is checked. If the

packet is authenticated, the window is advanced so that this sequence number is the right edge

of the window, and the corresponding slot in the window is marked.

 If the received packet is to the left of the window, or if authentication fails, the packet is

discarded; this is an auditable event.

Figure 1.4 Antireplay Mechanism

Integrity Check Value:

The Authentication Data field holds a value referred to as the Integrity Check Value. The ICV is a

message authentication code or a truncated version of a code produced by a MAC algorithm. The

current specification dictates that a compliant implementation must support

 HMAC-MD5-96

 HMAC-SHA-1-96

Both of these use the HMAC algorithm, the first with the MD5 hash code and the second with the

SHA-1 hash code. In both cases, the full HMAC value is calculated but then truncated by using the

first 96 bits, which is the default length for the Authentication Data field.

The MAC is calculated over

 IP header fields that either do not change in transit (immutable) or that are predictable in value

upon arrival at the endpoint for the AH SA. Fields that may change in transit and whose value

on arrival is unpredictable are set to zero for purposes of calculation at both source and

destination.

 The AH header other than the Authentication Data field. The Authentication Data field is set

to zero for purposes of calculation at both source and destination.

 The entire upper-level protocol data, which is assumed to be immutable in transit (e.g., a

TCP segment or an inner IP packet in tunnel mode).

For IPv4, examples of immutable fields are Internet Header Length and Source Address. An example

of a mutable but predictable field is the Destination Address (with loose or strict source routing).

Examples of mutable fields that are zeroed prior to ICV calculation are the Time to Live and Header

Checksum fields. Note that both source and destination address fields are protected, so that address

spoofing is prevented.

Transport and Tunnel Modes:

Tunnel mode provides protection to the entire IP packet. To achieve this, after the AH or ESP fields

are added to the IP packet, the entire packet plus security fields is treated as the payload of

new "outer" IP packet with a new outer IP header. The entire original, or inner, packet travels

through a "tunnel" from one point of an IP network to another; no routers along the way are able

to examine the inner IP header. Because the original packet is encapsulated, the new, larger packet

may have totally different source and destination addresses, adding to the security. Tunnel mode is

used when one or both ends of an SA are a security gateway, such as a firewall or router that

implements IPSec. With tunnel mode, a number of hosts on networks behind firewalls may engage in

secure communications without implementing IPSec. The unprotected packets generated by such

hosts are tunneled through external networks by tunnel mode SAs set up by the IPSec software in the

firewall or secure router at the boundary of the local network.

ESP in tunnel mode encrypts and optionally authenticates the entire inner IP packet, including the

inner IP header. AH in tunnel mode authenticates the entire inner IP packet and selected portions of

the outer IP header.

Table 1.2 summarizes transport and tunnel mode functionality.

Table 1.2. Tunnel Mode and Transport Mode Functionality

 Transport Mode SA Tunnel Mode SA

AH Authenticates IP payload and selected portions

of IP header and IPv6 extension headers.

Authenticates entire inner IP
packet (inner header plus IP

payload) plus selected

portions of outer IP header and
outer IPv6 extension headers.

ESP Encrypts IP payload and any IPv6

extension headers following the ESP

header.

Encrypts entire inner IP packet.

ESP with

Authentication

Encrypts IP payload and any IPv6 extension

headers following the ESP header.

Authenticates IP payload but not IP header.

Encrypts entire inner IP

packet. Authenticates inner

IP packet.

Figure 1.5 shows two ways in which the IPSec authentication service can be used. In one case,

authentication is provided directly between a server and client workstations; the workstation can be

either on the same network as the server or on an external network. As long as the workstation and the

server share a protected secret key, the authentication process is secure. This case uses a transport

mode SA. In the other case, a remote workstation authenticates itself to the corporate firewall, either

for access to the entire internal network or because the requested server does not support the

authentication feature. This case uses a tunnel mode SA.

Figure 1.5 End-to-End versus End-to-Intermediate Authentication

Now we look at the scope of authentication provided by AH and the authentication header location

for the two modes. The considerations are somewhat different for IPv4 and IPv6. Figure 1.6a shows

typical IPv4 and IPv6 packets. In this case, the IP payload is a TCP segment; it could also be a data

unit for any other protocol that uses IP, such as UDP or ICMP.

For transport mode AH using IPv4, the AH is inserted after the original IP header and before the IP

payload (e.g., a TCP segment); this is shown in the upper part of Figure 1.6b. Authentication covers

the entire packet, excluding mutable fields in the IPv4 header that are set to zero for MAC

calculation.

In the context of IPv6, AH is viewed as an end-to-end payload; that is, it is not examined or processed

by intermediate routers. Therefore, the AH appears after the IPv6 base header and the hop-by-hop,

routing, and fragment extension headers. The destination options extension header could appear

before or after the AH header, depending on the semantics desired. Again, authentication covers the

entire packet, excluding mutable fields that are set to zero for MAC calculation.

For tunnel mode AH, the entire original IP packet is authenticated, and the AH is inserted between

the original IP header and a new outer IP header (Figure 1.6c). The inner IP header carries the

ultimate source and destination addresses, while an outer IP header may contain different IP addresses

(e.g., addresses of firewalls or other security gateways).

With tunnel mode, the entire inner IP packet, including the entire inner IP header is protected by AH.

The outer IP header (and in the case of IPv6, the outer IP extension headers) is protected except for

mutable and unpredictable fields.

Figure 1.6. Scope of AH Authentication

Encapsulating Security Payload:

The Encapsulating Security Payload provides confidentiality services, including confidentiality of

message contents and limited traffic flow confidentiality. As an optional feature, ESP can also

provide an authentication service.

ESP Format:

Figure 1.7. IPSec ESP format

Figure 1.7 shows the format of an ESP packet. It contains the following fields:

 Security Parameters Index (32 bits): Identifies a security association.

 Sequence Number (32 bits): A monotonically increasing counter value; this provides an anti-

replay function, as discussed for AH.

 Payload Data (variable): This is a transport-level segment (transport mode) or IP packet

(tunnel mode) that is protected by encryption.

 Padding (0255 bytes): The purpose of this field is discussed later.

 Pad Length (8 bits): Indicates the number of pad bytes immediately preceding this field.

 Next Header (8 bits): Identifies the type of data contained in the payload data field by

identifying the first header in that payload

 Authentication Data (variable): A variable-length field (must be an integral number of 32-bit

words) that contains the Integrity. Check Value computed over the ESP packet minus the

Authentication Data field.

Encryption and Authentication Algorithms:

The Payload Data, Padding, Pad Length, and Next Header fields are encrypted by the ESP service.

If the algorithm used to encrypt the payload requires cryptographic synchronization data, such as an

initialization vector (IV), then these data may be carried explicitly at the beginning of the Payload

Data field. If included, an IV is usually not encrypted, although it is often referred to as being part of

the ciphertext.

The current specification dictates that a compliant implementation must support DES in cipher block

chaining (CBC) mode. A number of other algorithms have been assigned identifiers in the DOI

document and could therefore easily be used for encryption; these include

 Three-key triple DES

 RC5

 IDEA

 Three-key triple IDEA

 CAST

 Blowfish

As with AH, ESP supports the use of a MAC with a default length of 96 bits. Also as with AH, the

current specification dictates that a compliant implementation must support HMAC- MD5-96 and

HMAC-SHA-1-96.

Padding:

The Padding field serves several purposes:

 If an encryption algorithm requires the plaintext to be a multiple of some number of bytes

(e.g., the multiple of a single block for a block cipher), the Padding field is used to expand the

plaintext (consisting of the Payload Data, Padding, Pad Length, and Next Header fields) to

the required length.

 The ESP format requires that the Pad Length and Next Header fields be right aligned within a

32-bit word. Equivalently, the ciphertext must be an integer multiple of 32 bits. The Padding

field is used to assure this alignment.

 Additional padding may be added to provide partial traffic flow confidentiality by concealing

the actual length of the payload.

Transport and Tunnel Modes:

Figure 1.8 shows two ways in which the IPSec ESP service can be used. In the upper part of the

figure, encryption (and optionally authentication) is provided directly between two hosts. Figure 1.8b

shows how tunnel mode operation can be used to set up a virtual private network. In this example, an

organization has four private networks interconnected across the Internet. Hosts on the internal

networks use the Internet for transport of data but do not interact with other Internet-based hosts. By

terminating the tunnels at the security gateway to each internal network, the configuration allows the

hosts to avoid implementing the security capability. The former technique is support by a transport

mode SA, while the latter technique uses a tunnel mode SA.

Figure 1.8. Transport-Mode vs. Tunnel-Mode Encryption

Transport Mode ESP:

Transport mode ESP is used to encrypt and optionally authenticate the data carried by IP (e.g., a TCP

segment), as shown in Figure 1.9a. For this mode using IPv4, the ESP header is inserted into the IP

packet immediately prior to the transport-layer header (e.g., TCP, UDP, ICMP) and an ESP trailer

(Padding, Pad Length, and Next Header fields) is placed after the IP packet; if authentication is

selected, the ESP Authentication Data field is added after the ESP trailer. The entire transport-level

segment plus the ESP trailer are encrypted. Authentication covers all of the ciphertext plus the ESP

header.

Figure 1.9. Scope of ESP Encryption and Authentication

In the context of IPv6, ESP is viewed as an end-to-end payload; that is, it is not examined or

processed by intermediate routers. Therefore, the ESP header appears after the IPv6 base

header and the hop-by-hop, routing, and fragment extension headers. The destination options

extension header could appear before or after the ESP header, depending on the semantics desired.

For IPv6, encryption covers the entire transport-level segment plus the ESP trailer plus the destination

options extension header if it occurs after the ESP header. Again, authentication covers the ciphertext

plus the

ESP header.

Transport mode operation may be summarized as follows:

 At the source, the block of data consisting of the ESP trailer plus the entire transport- layer

segment is encrypted and the plaintext of this block is replaced with its ciphertext to form

the IP packet for transmission. Authentication is added if this option is selected.

 The packet is then routed to the destination. Each intermediate router needs to examine and

process the IP header plus any plaintext IP extension headers but does not need to examine

the ciphertext.

 The destination node examines and processes the IP header plus any plaintext IP extension

headers. Then, on the basis of the SPI in the ESP header, the destination node decrypts the

remainder of the packet to recover the plaintext transport-layer segment.

Transport mode operation provides confidentiality for any application that uses it, thus avoiding the

need to implement confidentiality in every individual application. This mode of operation is also

reasonably efficient, adding little to the total length of the IP packet. One drawback to this mode is

that it is possible to do traffic analysis on the transmitted packets.

Tunnel Mode ESP:

Tunnel mode ESP is used to encrypt an entire IP packet (Figure 1.9b). For this mode, the ESP

header is prefixed to the packet and then the packet plus the ESP trailer is encrypted. This method can

be used to counter traffic analysis.

The transport mode is suitable for protecting connections between hosts that support the ESP feature,

the tunnel mode is useful in a configuration that includes a firewall or other sort of security gateway

that protects a trusted network from external networks. In this latter case, encryption occurs only

between an external host and the security gateway or between two security gateways. This relieves

hosts on the internal network of the processing burden of encryption and simplifies the key

distribution task by reducing the number of needed keys. Further, it thwarts traffic analysis based on

ultimate destination.

Consider a case in which an external host wishes to communicate with a host on an internal network

protected by a firewall, and in which ESP is implemented in the external host and the firewalls. The

following steps occur for transfer of a transport-layer segment from the external host to the internal

host:

 The source prepares an inner IP packet with a destination address of the target internal host.

This packet is prefixed by an ESP header; then the packet and ESP trailer are encrypted and

Authentication Data may be added. The resulting block is encapsulated with a new IP header

(base header plus optional extensions such as routing and hop-by-hop options for IPv6)

whose destination address is the firewall; this forms the outer IP packet.

 The outer packet is routed to the destination firewall. Each intermediate router needs to

examine and process the outer IP header plus any outer IP extension headers but does not

need to examine the ciphertext.

 The destination firewall examines and processes the outer IP header plus any outer IP

extension headers. Then, on the basis of the SPI in the ESP header, the destination node

decrypts the remainder of the packet to recover the plaintext inner IP packet. This packet is

then transmitted in the internal network.

 The inner packet is routed through zero or more routers in the internal network to the

destination host.

Combining Security Associations:

An individual SA can implement either the AH or ESP protocol but not both. Sometimes a particular

traffic flow will call for the services provided by both AH and ESP. Further, a particular traffic flow

may require IPSec services between hosts and, for that same flow, separate services between security

gateways, such as firewalls. In all of these cases, multiple SAs must be employed for the same traffic

flow to achieve the desired IPSec services. The term security association bundle refers to a sequence

of SAs through which traffic must be processed to provide a desired set of IPSec services. The SAs in

a bundle may terminate at different endpoints or at the same endpoints.

Security associations may be combined into bundles in two ways:

 Transport adjacency: Refers to applying more than one security protocol to the same

IP packet, without invoking tunneling. This approach to combining AH and ESP allows for

only one level of combination; further nesting yields no added benefit since the processing is

performed at one IPsec instance: the (ultimate) destination.

 Iterated tunneling: Refers to the application of multiple layers of security protocols effected

through IP tunneling. This approach allows for multiple levels of nesting, since each tunnel

can originate or terminate at a different IPsec site along the path.

The two approaches can be combined, for example, by having a transport SA between hosts travel

part of the way through a tunnel SA between security gateways.

One interesting issue that arises when considering SA bundles is the order in which authentication

and encryption may be applied between a given pair of endpoints and the ways of doing so. We

examine that issue next. Then we look at combinations of SAs that involve at least one tunnel.

Authentication Plus Confidentiality:

Encryption and authentication can be combined in order to transmit an IP packet that has both

confidentiality and authentication between hosts. We look at several approaches.

ESP with Authentication Option

This approach is illustrated in Figure 1.9. In this approach, the user first applies ESP to the data to be

protected and then appends the authentication data field. There are actually two subcases:

 Transport mode ESP: Authentication and encryption apply to the IP payload delivered to

the host, but the IP header is not protected.

 Tunnel mode ESP: Authentication applies to the entire IP packet delivered to the outer IP

destination address (e.g., a firewall), and authentication is performed at that destination. The

entire inner IP packet is protected by the privacy mechanism, for delivery to the inner IP

destination.

For both cases, authentication applies to the ciphertext rather than the plaintext.

. Transport Adjacency:

Another way to apply authentication after encryption is to use two bundled transport SAs, with the

inner being an ESP SA and the outer being an AH SA. In this case ESP is used without its

authentication option. Because the inner SA is a transport SA, encryption is applied to the IP

payload. The resulting packet consists of an IP header (and possibly IPv6 header extensions)

followed by an ESP. AH is then applied in transport mode, so that authentication covers the

ESP plus the original IP header (and extensions) except for mutable fields. The advantage of this

approach over simply using a single ESP SA with the ESP authentication option is that the

authentication covers more fields, including the source and destination IP addresses. The

disadvantage is the overhead of two SAs versus one SA. Transport-Tunnel Bundle:

The use of authentication prior to encryption might be preferable for several reasons. First, because

the authentication data are protected by encryption, it is impossible for anyone to intercept the

message and alter the authentication data without detection. Second, it may be desirable to store the

authentication information with the message at the destination for later reference. It is more

convenient to do this if the authentication information applies to the unencrypted message;

otherwise the message would have to be reencrypted to verify the authentication information.

One approach to applying authentication before encryption between two hosts is to use a bundle

consisting of an inner AH transport SA and an outer ESP tunnel SA. In this case, authentication

is applied to the IP payload plus the IP header (and extensions) except for mutable fields. The

resulting IP packet is then processed in tunnel mode by ESP; the result is that the entire,

authenticated inner packet is encrypted and a new outer IP header (and extensions) is added.

Basic Combinations of Security Associations:

The IPSec Architecture document lists four examples of combinations of SAs that must be supported

by compliant IPSec hosts (e.g.workstation, server) or security gateways (e.g. firewall, router). These

are illustrated in Figure 1.10. The lower part of each case in the figure represents the physical

connectivity of the elements; the upper part represents logical connectivity via one or more nested

SAs. Each SA can be either AH or ESP. For host-to-host SAs, the mode may be either transport or

tunnel; otherwise it must be tunnel mode.

Figure 1.10 Basic Combinations of Security Associations

In Case 1, all security is provided between end systems that implement IPSec. For any two end

systems to communicate via an SA, they must share the appropriate secret keys. Among the possible

combinations:

a. AH in transport mode

b. ESP in transport mode

c. ESP followed by AH in transport mode (an ESP SA inside an AH SA)

d. Any one of a, b, or c inside an AH or ESP in tunnel mode

We have already discussed how these various combinations can be used to support

authentication, encryption, authentication before encryption, and authentication after

encryption.

For Case 2, security is provided only between gateways (routers, firewalls, etc.) and no hosts implement IPSec.

This case illustrates simple virtual private network support. The security architecture document specifies that

only a single tunnel SA is needed for this case.

The tunnel could support AH, ESP, or ESP with the authentication option. Nested tunnels are not

required because the IPSec services apply to the entire inner packet.

Case 3 builds on Case 2 by adding end-to-end security. The same combinations discussed for cases 1

and 2 are allowed here. The gateway-to-gateway tunnel provides either authentication or

confidentiality or both for all traffic between end systems. When the gateway-to-gateway tunnel is

ESP, it also provides a limited form of traffic confidentiality. Individual hosts can implement any

additional. IPSec services required for given applications or given users by means of end-to-end SAs.

Case 4 provides support for a remote host that uses the Internet to reach an organization's firewall

and then to gain access to some server or workstation behind the firewall. Only tunnel mode is

required between the remote host and the firewall. As in Case 1, one or two SAs may be used between

the remote host and the local host.

	Unit – I
	1.2. SECURITY ATTACKS
	PASSIVE ATTACKS
	ACTIVE ATTACKS

	1.3. SECURITY SERVICES
	AUTHENTICATION
	Peer Entity Authentication
	Data Origin Authentication
	ACCESS CONTROL
	DATA CONFIDENTIALITY
	Connection Confidentiality
	Connectionless Confidentiality
	Selective-Field Confidentiality
	Traffic Flow Confidentiality
	DATA INTEGRITY
	Connection Integrity with Recovery
	Connection Integrity without Recovery
	Selective-Field Connection Integrity
	Connectionless Integrity
	NONREPUDIATION
	Nonrepudiation, Origin
	Nonrepudiation, Destination
	AUTHENTICATION (1)
	ACCESS CONTROL (1)
	DATA CONFIDENTIALITY (1)
	DATA INTEGRITY (1)
	NONREPUDIATION (1)

	1.4. SECURITY MECHANISMS
	SPECIFIC SECURITY MECHANISMS
	Encipherment
	Digital Signature
	Access Control
	Data Integrity
	Authentication Exchange
	Traffic Padding
	Routing Control
	Notarization
	PERVASIVE SECURITY MECHANISMS
	Trusted Functionality
	Security Label
	Event Detection
	Security Audit Trail
	Security Recovery

	1.5. A Model for Network Security
	1.6. CLASSICAL ENCRYPTION TECHNIQUES
	Cryptography
	Cryptanalysis
	1.8. SUBSTITUTION TECHNIQUES
	a.Caesar Cipher
	b.Playfair Cipher
	c.Hill Cipher
	d.Polyalphabetic Ciphers:

	1.9 TRANSPOSITION TECHNIQUES
	1.10. ROTOR MACHINES
	1.11. STEGANOGRAPHY
	Reference Book :

	UNIT-2
	Block Cipher principles:
	Stream Ciphers and Block Ciphers:
	The Feistel Cipher:
	Fig: Feistel Cipher structures
	Feistel Decryption Algorithm:

	Data Encryption Standard:
	Overall structure
	DETAILS OF SINGLE ROUND
	KEY GENERATION:
	DES:
	The Avalanche Effect:
	THE STRENGTH OF DES:
	The Nature of the DES Algorithm:
	Timing Attacks:
	Number of Rounds:
	Design of Function F:
	Key Schedule Algorithm:
	Triple DES(3DES):
	ADVANCED ENCRYPTION STANDARD (AES):
	Substitute Bytes
	Shift Rows Transformation:
	FORWARD SHIFT ROW TRANSFORMATION:
	INVERSE SHIFT ROWS:
	MIX COLUMNS TRANSFORMATION:
	Forward Mix columns transformation:
	Inverse Mix columns transformation:

	Add Round Key Transformation:
	AES Key Expansion:

	BLOWFISH:
	BLOWFISH ALGORITHM:
	Encryption and Decryption
	Blowfish Decryption:
	Advantages or features of blowfish:

	Block Cipher Modes of Operation:
	Electronic Codebook Mode:
	Figure. Electronic Codebook (ECB) Mode
	Cipher Block Chaining Mode:
	Figure: Cipher Block Chaining (CBC) Mode
	Cipher Feedback Mode:
	Figure: s-bit Cipher Feedback (CFB) Mode
	Figure: S-bit Output Feedback (OFB) Mode
	Figure: Counter (CTR) Mode

	STREAM CIPHER:
	A typical stream cipher encrypts plaintext one byte at a time, although a stream cipher may be designed to operate on one bit at a time or on units larger than a byte at a time.
	Figure: representative diagram of stream cipher structure.
	In this structure, a key is input to a pseudorandom bit generator that produces a stream of 8-bit numbers that are apparently random. The output of the generator, called a keystream, is combined one byte at a time with the plaintext stream using the b...
	Example, if the next byte generated by the generator is 01101100 and the next plaintext byte is 11001100, then the resulting ciphertext byte is
	Important design considerations for a stream cipher:
	1. The encryption sequence should have a large period. A pseudorandom number generator uses a function that produces a deterministic stream of bits that eventually repeats. The longer the period of repeat the more difficult it will be to do cryptanaly...
	2. The keystream should approximate the properties of a true random number stream as close as possible. For example, there should be an approximately equal number of 1s and 0s. If the keystream is treated as a stream of bytes, then all of the 256 poss...
	3. Note from Figure 7.7 that the output of the pseudorandom number generator is conditioned on the value of the input key. To guard against brute-force attacks, the key needs to be sufficiently long. The same considerations that apply to block ciphers...
	With a properly designed pseudorandom number generator, a stream cipher can be as secure as a block cipher of comparable key length. A potential advantage of a stream cipher is that stream ciphers that do not use block ciphers as a building block are ...
	RC4:
	RC4 is a stream cipher designed in 1987 by Ron Rivest for RSA Security. It is a variable key size stream cipher with byte-oriented operations. The algorithm is based on the use of a random permutation. The RC4 algorithm is remarkably simple and quite ...
	A variablelength key of from 1 to 256 bytes (8 to 2048 bits) is used to initialize a 256-byte state vector S, with elements S[0],S[1], c,S[255]. At all times, S contains a permutation of all 8-bit numbers from 0 through 255. For encryption and decryp...
	Initialization of S
	To begin, the entries of S are set equal to the values from 0 through 255 in ascending order; that is, S[0] = 0, S[1] = 1, c, S[255] = 255 . A temporary vector, T, is also created. If the length of the key K is 256 bytes, then K is transferred to T. O...
	/* Initialization */
	for i = 0 to 255 do
	S[i] = i;
	T[i] = K[i mod keylen];
	Next we use T to produce the initial permutation of S. This involves starting with S[0] and going through to S[255], and for each S[i], swapping S[i] with another byte in S according to a scheme dictated by T[i]:
	/* Initial Permutation of S */
	j = 0;
	for i = 0 to 255 do (1)
	j = (j + S[i] + T[i]) mod 256;
	Swap (S[i], S[j]);
	Because the only operation on S is a swap, the only effect is a permutation. S still contains all the numbers from 0 through 255.
	Once the S vector is initialized, the input key is no longer used. Stream generation involves cycling through all the elements of S[i], and for each S[i], swapping S[i] with another byte in S according to a scheme dictated by the current configuration...
	/* Stream Generation */
	i, j = 0;
	while (true)
	i = (i + 1) mod 256;
	j = (j + S[i]) mod 256;
	Swap (S[i], S[j]); (1)
	t = (S[i] + S[j]) mod 256;
	k = S[t];
	To encrypt, XOR the value k with the next byte of plaintext. To decrypt, XOR the value k with the next byte of ciphertext. Following figure illustrates the RC4 logic.
	PUBLIC KEY CRYPTOGRAPHY:
	Introduction:
	Principles of Public-Key Cryptosystems:
	Public-Key Cryptosystems:
	ENCRYPTION:
	AUTHENTICATION:
	Difference between symmetric and public key encryption:
	Applications for Public-Key Cryptosystems:
	Requirements for Public-Key Cryptography:

	UNIT-III
	APPLICATIONS OF CRYPTOGRAPHIC HASH FUNCTIONS
	Message Authentication
	Digital Signatures
	REQUIREMENTS& SECURITY FOR A HASH FUNCTION:
	Brute-Force Attacks
	Cryptanalysis
	SHA(Secure Hash Algorithm):
	MESSAGE AUTHENTICATION
	MESSAGE AUTHENTICATION REQUIREMENTS
	MESSAGE AUTHENTICATION FUNCTIONS
	Message Encryption
	MESSAGE AUTHENTICATION CODE (MAC)
	SECURITY OF MACS:
	brute-force attacks
	cryptanalysis.
	HMAC:
	HMAC Design Objectives:
	DIGITAL SIGNATURES
	Properties
	DIGITAL SIGNATURE STANDARD
	KEY MANAGEMENT AND DISTRIBUTION

	Key management and Distribution Symmetric Key Distribution Using Symmetric Encryption
	Key distribution centre:
	Key Distribution Scenario:
	Major Issues with KDC:
	Session Key Lifetime
	A Transparent Key Control Scheme
	Decentralized Key Control
	Controlling Key Usage
	SYMMETRIC KEY DISTRIBUTION USING ASYMMETRIC ENCRYPTION
	Simple Secret Key Distribution
	A Hybrid Scheme:
	Distribution of Public Keys:
	Public Announcement of Public Keys
	Publicly Available Directory
	Public-Key Authority:
	Public-Key Certificates
	X.509 CERTIFICATES
	Obtaining a Certificate
	CA Hierarchy:
	Certificate Revocation:
	X.509 Version 3
	Certificate Extensions
	PUBLIC-KEY Infrastructure
	KERBEROS
	1.A Simple Authentication Dialogue
	2.A More Secure Authentication Dialogue
	Once per user logon session:-
	Once per type of service:
	Once per service session:
	Kerberos V4 Authentication Dialogue Message Exchange
	Kerberos 4 Overview
	Kerberos Realms and Multiple Kerberi
	Fig .Request for service in another Realm
	The details of the exchanges illustrated in Fig 2are as follows:
	Differences between Versions 4 and 5
	Environmental shortcomings:
	8. Internet protocol dependence:
	9. Message byte ordering:
	10. Ticket lifetime:
	11. Authentication forwarding:
	Technical deficiencies in the version 4 protocol:
	The Version 5 Authentication Dialogue
	CRYPTOGRAPHY AND NETWORK SECURITY
	UNIT 4
	WEB SECURITY
	Web Security Threats:
	SSL Architecture
	SSL Record Protocol
	SSL Handshake Protocol
	Change Cipher Spec Protocol
	Alert Protocol
	Example Alerts
	TRANSPORT LAYER SECURITY
	Alert Codes
	SECURE SHELL (SSH)
	Pretty Good Privacy:
	Introduction:
	Use of PGP:
	NOTATIONS
	PGP SERVICES

	Providing authentication by using PGP:
	Confidentiality by using PGP
	PGP for both authentication and confidentiality:
	COMPRESSION

	PGP uses ZIP compression algorithm
	S/MIME
	RFC 5322 (Internet Message Format).
	Message Structure
	MIME has 5 header fields
	Mime Content Types
	S/MIME Functionality
	CRYPTOGRAPHIC ALGORITHMS
	IP Security Overview:
	Applications of IPSec:
	Benefits of IPSec:
	Routing Applications:
	IP Security Architecture:
	IPSec Documents:
	Figure 1.2. IPSec Document Overview

	IPSec Services:
	Table 1.1. IPSec Services
	SA Parameters:
	Authentication Header:
	Figure 1.3 IPSec Authentication Header
	Anti-Replay Service:
	Figure 1.4 Antireplay Mechanism
	Transport and Tunnel Modes:
	Table 1.2. Tunnel Mode and Transport Mode Functionality
	Figure 1.5 End-to-End versus End-to-Intermediate Authentication
	Figure 1.6. Scope of AH Authentication
	ESP Format:
	Encryption and Authentication Algorithms:
	Padding:
	Transport and Tunnel Modes: (1)
	Figure 1.8. Transport-Mode vs. Tunnel-Mode Encryption
	Figure 1.9. Scope of ESP Encryption and Authentication
	Tunnel Mode ESP:
	Combining Security Associations:
	Authentication Plus Confidentiality:
	ESP with Authentication Option
	. Transport Adjacency:
	Basic Combinations of Security Associations:

