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Unit – I 

Cryptography and Network Security 

Definition of Computer Security: 

 The NIST Computer Security Handbook [NIST95] defines the term computer security as 

follows:  

Computer Security: The protection afforded to an automated information system in order to 

attain the applicable objectives of preserving the integrity, availability, and confidentiality of 

information system resources (includes hardware, software, firmware, information/data, and 

telecommunications).  

This definition introduces three key objectives that are at the heart of computer security:  

Confidentiality: This term covers two related concepts:  

Data confidentiality: Assures that private or confidential information is not made available or 

disclosed to unauthorized individuals. 

Privacy: Assures that individuals control or influence what information related to them may be 

collected and stored and by whom and to whom that information may be disclosed. 

 • Integrity: This term covers two related concepts:  

Data integrity: Assures that information and programs are changed only in a specified and 

authorized manner.  

System integrity: Assures that a system performs its intended function in an unimpaired manner, 

free from deliberate or inadvertent unauthorized manipulation of the system.  

• Availability: Assures that systems work promptly and service is not denied to authorized users. 

These three concepts form what is often referred to as the CIA triad.  

The three concepts embody the fundamental security objectives for both data and for information 

and computing services.  

For example, the NIST standard FIPS 199 (Standards for Security Categorization of Federal 

Information and Information Systems) lists confidentiality, integrity, and availability as the three 

security objectives for information and for information systems. 

 FIPS 199 provides a useful characterization of these three objectives in terms of requirements 

and the definition of a loss of security in each category: 

 • Confidentiality: Preserving authorized restrictions on information access and disclosure, 

including means for protecting personal privacy and proprietary information. A loss of 
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confidentiality is the unauthorized disclosure of information.  

• Integrity: Guarding against improper information modification or destruction, including 

ensuring information nonrepudiation and authenticity. A loss of integrity is the unauthorized 

modification or destruction of information.  

• Availability: Ensuring timely and reliable access to and use of information. A loss of 

availability is the disruption of access to or use of information or an information system 

The Challenges of Computer Security Computer and network security is both fascinating and complex. 
Some of the reasons follow:  

1. Security is not as simple as it might first appear to the novice. The requirements seem to be 

straightforward; indeed, most of the major requirements for security services can be given self-
explanatory, one-word labels: confidentiality, authentication, nonrepudiation, or integrity. But the 

mechanisms used to meet those requirements can be quite complex, and understanding them may involve 

rather subtle reasoning.  

2. In developing a particular security mechanism or algorithm, one must always consider potential attacks 
on those security features. In many cases, successful attacks are designed by looking at the problem in a 

completely different way, therefore exploiting an unexpected weakness in the mechanism.  

3. Because of point 2, the procedures used to provide particular services are often counterintuitive. 

Typically, a security mechanism is complex, and it is not obvious from the statement of a particular 
requirement that such elaborate measures are needed. It is only when the various aspects of the threat are 

considered that elaborate security mechanisms make sense.  

4. Having designed various security mechanisms, it is necessary to decide where to use them. This is true 
both in terms of physical placement (e.g., at what points in a network are certain security mechanisms 

needed) and in a logical sense (e.g., at what layer or layers of an architecture such as TCP/IP 

[Transmission Control Protocol/Internet Protocol] should mechanisms be placed).  

5. Security mechanisms typically involve more than a particular algorithm or protocol. They also require 
that participants be in possession of some secret information (e.g., an encryption key), which raises 

questions about the creation, distribution, and protection of that secret information. There also may be a 

reliance on communications protocols whose behavior may complicate the task of developing the security 
mechanism.  

6. Computer and network security is essentially a battle of wits between a peropetrator who tries to find 

holes and the designer or administrator who tries to close them. The great advantage that the attacker has 

is that he or she need only find a single weakness, while the designer must find and eliminate all 
weaknesses to achieve perfect security.  

7. There is a natural tendency on the part of users and system managers to perceive little benefit from 

security investment until a security failure occurs.  

8. Security requires regular, even constant, monitoring, and this is difficult in today’s short-term, 
overloaded environment.  

9. Security is still too often an afterthought to be incorporated into a system after the design is complete 
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rather than being an integral part of the design process.  

10. Many users and even security administrators view strong security as an impediment to efficient and 

user-friendly operation of an information system or use of information 

 

1.1. THE OSI SECURITY ARCHITECTURE 

The OSI security architecture focuses on security attacks, mechanisms, and services. These can 

be defined briefly as follows: 

➢  Security attack: Any action that compromises the security of information owned by an 
organization. 

➢  Security mechanism: A process (or a device incorporating such a process) that is 
designed to detect, prevent, or recover from a security attack. 

➢  Security service: A processing or communication service that enhances the security of 
the data processing systems and the information transfers of an organization. 

➢   

1.2. SECURITY ATTACKS 

 
A useful means of classifying security attacks, is in terms of passive attacks and active attacks. 

A passive attack attempts to learn or make use of information from the system but does not affect 

system resources. An active attack attempts to alter system resources or affect their operation. 

 

PASSIVE ATTACKS 

Passive attacks are in the nature of eavesdropping on, or monitoring of, transmissions. The goal 

of the opponent is to obtain information that is being transmitted.  

 

Two types of passive attacks are release of message contents and traffic analysis. 

 

The release of message contents is easily understood (Figure 1.1a). A telephone conversation, an 

electronic mail message, and a transferred file may contain sensitive or confidential information. 

We would like to prevent an opponent from learning the contents of these transmissions. 
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Figure 1.1. Passive Attacks 

A second type of passive attack, traffic analysis, is subtler (Figure 1.1b). Suppose that we had a 

way of masking the contents of messages or other information traffic so that opponents, even if 

they captured the message, could not extract the information from the message. The common 

technique for masking contents is encryption. If we had encryption protection in place, an 

opponent might still be able to observe the pattern of these messages. The opponent could 

determine the location and identity of communicating hosts and could observe the frequency and 

length of messages being exchanged. 

Passive attacks are very difficult to detect because they do not involve any alteration of the data. 

Typically, the message traffic is not sent and received in an apparently normal fashion and the 

sender nor receiver is aware that a third party has read the messages or observed the traffic 

pattern. 

ACTIVE ATTACKS 

Active attacks involve some modification of the data stream or the creation of a false stream and 

can be subdivided into four categories: masquerade, replay, modification of messages, and 

denial of service. 

A masquerade takes place when one entity pretends to be a different entity (Figure 1.2a). A 

masquerade attack usually includes one of the other forms of active attack. For example, 

authentication sequences can be captured and replayed after a valid authentication sequence has 

taken place, thus enabling an authorized entity with few privileges to obtain extra privileges by 

impersonating an entity that has those privileges. 
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Replay involves the passive capture of a data unit and its subsequent retransmission to produce 

an unauthorized effect (Figure 1.2b). 

 

Modification of messages simply means that some portion of a legitimate message is altered, or 

that messages are delayed or reordered, to produce an unauthorized effect (Figure 1.2c). For 

example, a message meaning "Allow John Smith to read confidential file accounts" is modified 

to mean "Allow Fred Brown to read confidential file accounts." 

 

The denial of service prevents or inhibits the normal use or management of communications 

facilities (Figure 1.2d). This attack may have a specific target; for example, an entity may 

suppress all messages directed to a particular destination (e.g., the security audit service). 

Another form of service denial is the disruption of an entire network, either by disabling the 

network or by overloading it with messages so as to degrade performance. 
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Figure 1.2. Active Attacks 

1.3. SECURITY SERVICES 
AUTHENTICATION 

The assurance that the communicating entity is the one that it claims to be. 

Peer Entity Authentication 

Used in association with a logical connection to provide confidence in the identity of the entities 

connected. 

Data Origin Authentication 

In a connectionless transfer, provides assurance that the source of received data is as claimed. 

ACCESS CONTROL 

The prevention of unauthorized use of a resource (i.e., this service controls who can have access 

to a resource, under what conditions access can occur, and what those accessing the resource are 

allowed to do). 

DATA CONFIDENTIALITY 

The protection of data from unauthorized disclosure. 

Connection Confidentiality 

The protection of all user data on a connection. 

Connectionless Confidentiality 

The protection of all user data in a single data block 
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Selective-Field Confidentiality 

The confidentiality of selected fields within the user data on a connection or in a single data 

block. 

Traffic Flow Confidentiality 

The protection of the information that might be derived from observation of traffic flows. 

DATA INTEGRITY 

The assurance that data received are exactly as sent by an authorized entity (i.e., contain no 

modification, insertion, deletion, or replay). 

Connection Integrity with Recovery 

Provides for the integrity of all user data on a connection and detects any modification, insertion, 

deletion, or replay of any data within an entire data sequence, with recovery attempted. 

Connection Integrity without Recovery 

As above, but provides only detection without recovery. 

Selective-Field Connection Integrity 

Provides for the integrity of selected fields within the user data of a data block transferred over a 

connection and takes the form of determination of whether the selected fields have been 

modified, inserted, deleted, or replayed. 

Connectionless Integrity 

Provides for the integrity of a single connectionless data block and may take the form of 

detection of data modification. Additionally, a limited form of replay detection may be provided. 

Selective-Field Connectionless Integrity 

Provides for the integrity of selected fields within a single connectionless data block; takes the 

form of determination of whether the selected fields have been modified. 

NONREPUDIATION 

Provides protection against denial by one of the entities involved in a communication of having 

participated in all or part of the communication. 

Nonrepudiation, Origin 

Proof that the message was sent by the specified party. 

Nonrepudiation, Destination 

Proof that the message was received by the specified party. 

AUTHENTICATION 

The authentication service is concerned with assuring that a communication is authentic. In the 

case of a single message, such as a warning or alarm signal, the function of the authentication 

service is to assure the recipient that the message is from the source that it claims to be from. In 

the case of an ongoing interaction, such as the connection of a terminal to a host, two aspects are 

involved. First, at the time of connection initiation, the service assures that the two entities are 

authentic, that is, that each is the entity that it claims to be. Second, the service must assure that 

the connection is not interfered with in such a way that a third party can masquerade as one of 

the two legitimate parties for the purposes of unauthorized transmission or reception. 

Two specific authentication services are defined in X.800: 

Peer entity authentication: Provides for the corroboration of the identity of a peer entity in an 

association. It is provided for use at the establishment of, or at times during the data transfer 

phase of, a connection. It attempts to provide confidence that an entity is not performing either 

a masquerade or an unauthorized replay of a previous connection. 

Data origin authentication: Provides for the corroboration of the source of a data unit. It does 
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not provide protection against the duplication or modification of data units. This type of service 

supports applications like electronic mail where there are no prior interactions between the 

communicating entities. 

ACCESS CONTROL 

In the context of network security, access control is the ability to limit and control the access to 

host systems and applications via communications links. To achieve this, each entity trying to 

gain access must first be identified, or authenticated, so that access rights can be tailored to the 

individual. 

DATA CONFIDENTIALITY 

Confidentiality is the protection of transmitted data from passive attacks. With respect to the 

content of a data transmission, several levels of protection can be identified. The broadest service 

protects all user data transmitted between two users over a period of time. For example, when a 

TCP connection is set up between two systems, this broad protection prevents the release of any 

user data transmitted over the TCP connection. Narrower forms of this service can also be 

defined, including the protection of a single message or even specific fields within a message. 

These refinements are less useful than the broad approach and may even be more complex and 

expensive to implement. The other aspect of confidentiality is the protection of traffic flow from 

analysis. This requires that an attacker not be able to observe the source and destination, 

frequency, length, or other characteristics of the traffic on a communications facility. 

DATA INTEGRITY 

As with confidentiality, integrity can apply to a stream of messages, a single message, or selected 

fields within a message. Again, the most useful and straightforward approach is total stream 

protection. 

A connection-oriented integrity service, one that deals with a stream of messages, assures that 

messages are received as sent, with no duplication, insertion, modification, reordering, or 

replays. The destruction of data is also covered under this service. Thus, the connection-oriented 

integrity service addresses both message stream modification and denial of service. On the other 

hand, a connectionless integrity service, one that deals with individual messages without regard 

to any larger context, ge nerallyprovides protection against message modification only. 

We can make a distinction between the service with and without recovery. Because the integrity 

service relates to active attacks, we are concerned with detection rather than prevention. If a 

violation of integrity is detected, then the service may simply report this violation, and some 

other portion of software or human intervention is required to recover from the violation. 

Alternatively, there are mechanisms available to recover from the loss of integrity of data, as we 

will review subsequently. The incorporation of automated recovery mechanisms is, in general, 

the more attractive alternative. 

NONREPUDIATION 

Nonrepudiation prevents either sender or receiver from denying a transmitted message. Thus, 

when a message is sent, the receiver can prove that the alleged sender in fact sent the message. 

Similarly, when a message is received, the sender can prove that the alleged receiver in fact 

received the message. 

1.4. SECURITY MECHANISMS 
There are two types of security Mechanisms 1. Specific Security Mechanisms 2. Pervasive 

Security Mechanisms 

SPECIFIC SECURITY MECHANISMS 
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May be incorporated into the appropriate protocol layer in order to provide some of the OSI 

security services. 

Encipherment 

The use of mathematical algorithms to transform data into a form that is not readily intelligible. 

The transformation and subsequent recovery of the data depend on an algorithm and zero or 

more encryption keys. 

Digital Signature 

Data appended to, or a cryptographic transformation of, a data unit that allows a recipient of the 

data unit to prove the source and integrity of the data unit and protect against forgery (e.g., by the 

recipient). 

Access Control 

A variety of mechanisms that enforce access rights to resources. 

Data Integrity 

A variety of mechanisms used to assure the integrity of a data unit or stream of data units. 

Authentication Exchange 

A mechanism intended to ensure the identity of an entity by means of information exchange. 

Traffic Padding 

The insertion of bits into gaps in a data stream to frustrate traffic analysis attempts. 

Routing Control 

Enables selection of particular physically secure routes for certain data and allows routing 

changes, especially when a breach of security is suspected. 

Notarization 

The use of a trusted third party to assure certain properties of a data exchange. 

PERVASIVE SECURITY MECHANISMS 

Mechanisms that are not specific to any particular OSI security service or protocol layer. 

Trusted Functionality 

That which is perceived to be correct with respect to some criteria (e.g., as established by a 

security policy). 

Security Label 

The marking bound to a resource (which may be a data unit) that names or designates the 

security attributes of that resource. 

Event Detection 

Detection of security-relevant events. 

Security Audit Trail 

Data collected and potentially used to facilitate a security audit, which is an independent review 

and examination of system records and activities. 

Security Recovery 

Deals with requests from mechanisms, such as event handling and management functions, and 

takes recovery actions. 

1.5. A Model for Network Security 
A model for much of what we will be discussing is captured, in very general terms, in Figure 1.3. 

A message is to be transferred from one party to another across some sort of internet. The two 

parties, who are the principals in this transaction, must cooperate for the exchange to take place. 

A logical information channel is established by defining a route through the internet from source 
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to destination and by the cooperative use of communication protocols (e.g., TCP/IP) by the two 

principals. 
 

 
Figure 1.3. Model for Network Security 

Security aspects come into play when it is necessary or desirable to protect the information 

transmission from an opponent who may present a threat to confidentiality, authenticity, and so 

on. All the techniques for providing security have two components: 

➢  A security-related transformation on the information to be sent. Examples include the 

encryption of the message, which scrambles the message so that it is unreadable by the 

opponent, and the addition of a code based on the contents of the message, which can be 
used to verify the identity of the sender 

➢  Some secret information shared by the two principals and, it is hoped, unknown to the 

opponent. An example is an encryption key used in conjunction with the transformation 
to scramble the message before transmission and unscramble it on reception. 

A trusted third party may be needed to achieve secure transmission. For example, a third party 

may be responsible for distributing the secret information to the two principals while keeping it 

from any opponent. Or a third party may be needed to arbitrate disputes between the two 

principals concerning the authenticity of a message transmission. 

This general model shows that there are four basic tasks in designing a particular security 

service: 

➢  Design an algorithm for performing the security-related transformation. The algorithm 
should be such that an opponent cannot defeat its purpose. 

➢  Generate the secret information to be used with the algorithm. 

➢  Develop methods for the distribution and sharing of the secret information. 
➢  Specify a protocol to be used by the two principals that makes use of the security 

algorithm and the secret information to achieve a particular security service. 
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• Information access threats: Intercept or modify data on behalf of users who should not have access to 

that data.  

• Service threats: Exploit service flaws in computers to inhibit use by legitimate users 

Viruses and worms are two examples of software attacks. Such attacks can be introduced into a system 

by means of a disk that contains the unwanted logic concealed in otherwise useful software. They can 

also be inserted into a system across a network; this latter mechanism is of more concern in network 

security.  

The security mechanisms needed to cope with unwanted access fall into two broad categories (see 

Figure 1.3). The first category might be termed a gatekeeper function. It includes password-based 

login procedures that are designed to deny access to all but authorized users and screening logic that is 

designed to detect and reject worms, viruses, and other similar attacks. Once either an unwanted user 

or unwanted software gains access, the second line of defense consists of a variety of internal controls 

that monitor activity and analyze stored information in an attempt to detect the presence of unwanted 

intruders. 

 

1.6. CLASSICAL ENCRYPTION TECHNIQUES 
➢  Symmetric encryption is a form of cryptosystem in which encryption and decryption are 

performed using the same key. It is also known as conventional encryption. 

➢  Symmetric encryption transforms plaintext into ciphertext using a secret key and an 

encryption algorithm. Using the same key and a decryption algorithm, the plaintext is 
recovered from the ciphertext. 

➢  The two types of attack on an encryption algorithm are cryptanalysis, based on properties 
of the encryption algorithm, and brute-force, which involves trying allpossible keys. 

➢  Traditional (precomputer) symmetric ciphers use substitution and/or transposition 

techniques. Substitution techniques map plaintext elements (characters, bits) into 

ciphertext elements. Transposition techniques systematically transpose the positions of 

plaintext elements. 

➢  Rotor machines are sophisticated precomputer hardware devices that use substitution 
techniques. 

➢  Steganography is a technique for hiding a secret message within a larger one in such a 
way that others cannot discern the presence or contents of the hidden message. 
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Before beginning, we define some terms. An original message is known as the plaintext, while 

the coded message is called the ciphertext. The process of converting from plaintext to 

ciphertext is known as enciphering or encryption; restoring the plaintext from the ciphertext is 

deciphering or decryption. The many schemes used for encryption constitute the area of study 

known as cryptography. Such a scheme is known as a cryptographic system or a cipher. 

Techniques used for deciphering a message without any knowledge of  the enciphering details 

fall into the area of cryptanalysis. Cryptanalysis is what the layperson calls "breaking the code." 

The areas of cryptography and cryptanalysis together are called cryptology. 

1.7. SYMMETRIC CIPHER MODEL 
A symmetric encryption scheme has five ingredients (Figure 1.4): 

➢  Plaintext: This is the original intelligible message or data that is fed into the algorithm as 

input. 

➢  Encryption algorithm: The encryption algorithm performs various substitutions and 

➢  transformations on the plaintext. 
➢  Secret key: The secret key is also input to the encryption algorithm. The key is a value 

independent of the plaintext and of the algorithm. The algorithm will produce a different 

output depending on the specific key being used at the time. The exact substitutions and 

transformations performed by the algorithm depend on the key. 

➢  Ciphertext: This is the scrambled message produced as output. It depends on the 

plaintext and the secret key. For a given message, two different keys will produce two 

different ciphertexts. The ciphertext is an apparently random stream of data and, as it 

stands, is unintelligible. 

➢  Decryption algorithm: This is essentially the encryption algorithm run in reverse. It 
takes the ciphertext and the secret key and produces the original plaintext. 
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Figure 1.4. Simplified Model of Conventional Encryption 

There are two requirements for secure use of conventional encryption: 

We need a strong encryption algorithm. At a minimum, we would like the algorithm to be 

such that an opponent who knows the algorithm and has access to one or more ciphertexts would 

be unable to decipher the ciphertext or figure out the key. This requirement is usually stated in a 

stronger form: The opponent should be unable to decrypt ciphertext or discover the key even if 

he or she is in possession of a number of ciphertexts together with the plaintext that produced 

each ciphertext 

Sender and receiver must have obtained copies of the secret key in a secure fashion and 

must keep the key secure. If someone can discover the key and knows the algorithm, all 

communication using this key is readable. 

We assume that it is impractical to decrypt a message on the basis of the ciphertext plus 

knowledge of the encryption/decryption algorithm. In other words, we do not need to keep the 

algorithm secret; we need to keep only the key secret. 

Let us take a closer look at the essential elements of a symmetric encryption scheme, 

using Figure 1.5 .A source produces a message in plaintext, X = [X1, X2, ..., XM]. The M 

elements of X are letters in some finite alphabet. Traditionally, the alphabet usually consisted of 

the 26 capital letters. Nowadays, the binary alphabet {0, 1} is typically used. For encryption, a 

key of the form K = [K1, K2, ..., KJ] is generated. If the key is generated at the message source, 

then it must also be provided to the destination by means of some secure channel. Alternatively, 

a third party could generate the key and securely deliver it to both source and destination. 
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Figure 1.5 Model of Conventional Cryptosystem 

With the message X and the encryption key K as input, the encryption algorithm forms the 

ciphertext Y = [Y1, Y2, ..., YN]. We can write this as Y = E(K, X) This notation indicates that Y 

is produced by using encryption algorithm E as a function of the plaintext X, with the specific 

function determined by the value of the key K. 

The intended receiver, in possession of the key, is able to invert the transformation: 

X = D(K, Y) 

An opponent, observing Y but not having access to K or X, may attempt to recover X or K or 

both X and K. It is assumed that the opponent knows the encryption (E) and decryption (D) 

algorithms. If the opponent is interested in only this particular message, then the focus of the 

effort  is  to  recover X  by generating a plaintext estimate  . Often, however, the opponent is 

interested in being able to read future messages as well, in which case an attempt is made to 

recover K by generating an estimate . 

Cryptography 
Cryptographic systems are characterized along three independent dimensions: 

➢  The type of operations used for transforming plaintext to ciphertext. All encryption 
algorithms are based on two general principles: substitution, in which each element in the 

➢  plaintext (bit, letter, group of bits or letters) is mapped into another element, and 

transposition, in which elements in the plaintext are rearranged. The fundamental 

requirement is that no information be lost (that is, that all operations are reversible). Most 

systems, referred to as product systems, involve multiple stages of substitutions and 

transpositions. 

➢  2. The number of keys used. If both sender and receiver use the same key, the system is 
➢  referred to as symmetric, single-key, secret-key, or conventional encryption. If the sender 

and receiver use different keys, the system is referred to as asymmetric, two-key, or 
public-key encryption. 

➢  3. The way in which the plaintext is processed. A block cipher processes the input one 

block of elements at a time, producing an output block for each input block. A stream 

cipher processes the input elements continuously, producing output one element at a time, 
as it goes along. 
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Cryptanalysis 
 

Typically, the objective of attacking an encryption system is to recover the key in use rather then 

simply to recover the plaintext of a single ciphertext. There are two general approaches to 

attacking a conventional encryption scheme: 

➢  Cryptanalysis: Cryptanalytic attacks rely on the nature of the algorithm plus perhaps 

some knowledge of the general characteristics of the plaintext or even some sample 

plaintext ciphertext pairs. This type of attack exploits the characteristics of the algorithm 

to attempt to deduce a specific plaintext or to deduce the key being used. 

➢  Brute-force attack: The attacker tries every possible key on a piece of ciphertext until an 

intelligible translation into plaintext is obtained. On average, half of all possible keys 

must be tried to achieve success. 

1.8. SUBSTITUTION TECHNIQUES 
a.Caesar Cipher 

The earliest known use of a substitution cipher, and the simplest, was by Julius Caesar. The 

Caesar cipher involves replacing each letter of the alphabet with the letter standing three places 

further down the alphabet. For example, 

plain: meet me after the toga party 

cipher: PHHW PH DIWHU WKH WRJD SDUWB 

Note that the alphabet is wrapped around, so that the letter following Z is A. We can define the 

transformation by listing all possibilities, as follows: 

plain: a b c d e f g h i j k l m n o p q r s t u v w x y z 

cipher: D E F G H I J K L M N O P Q R S T U V W X Y Z A B C 

Let us assign a numerical equivalent to each letter: 

a B C d e f g h i j K L m 

0 1 2 3 4 5 6 7 8 9 10 11 12 

 

n O P q r s t u v w X y z 

13 14 15 16 17 18 19 20 21 22 23 24 25 

 

Then the algorithm can be expressed as follows. For each plaintext letter p, substitute the 

ciphertext letter C 

C = E(3, p) = (p + 3) mod 26 

A shift may be of any amount, so that the general Caesar algorithm is 

C = E(k, p) = (p + k) mod 26 

where k takes on a value in the range 1 to 25. The decryption algorithm is simply 

p = D(k, C) = (C k) mod 26 

If it is known that a given ciphertext is a Caesar cipher, then a brute-force cryptanalysis is easily 

performed: Simply try all the 25 possible keys. 

Three important characteristics of this problem enabled us to use a brute-force cryptanalysis: 

➢  The encryption and decryption algorithms are known. 

➢  There are only 25 keys to try. 

➢  The language of the plaintext is known and easily recognizable. 

b.Playfair Cipher 
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The best-known multiple-letter encryption cipher is the Playfair, which treats digrams in the 

plaintext as single units and translates these units into ciphertext digrams. The Playfair algorithm 

is based on the use of a 5 x 5 matrix of letters constructed using a keyword. 
 

 
M O N A R 

C H Y B D 

E F G I/J K 

L P O S T 

U V W X Z 
 

In this case, the keyword is monarchy. The matrix is constructed by filling in the letters of the 

keyword (minus duplicates) from left to right and from top to bottom, and then filling in the 

remainder of the matrix with the remaining letters in alphabetic order. The letters I and J count as 

one letter. 

Plaintext is encrypted two letters at a time, according to the following rules: 

➢  Repeating plaintext letters that are in the same pair are separated with a filler letter, such 
as x, so that balloon would be treated as ba lx lo on. 

➢  Two plaintext letters that fall in the same row of the matrix are each replaced by the letter 

to the right, with the first element of the row circularly following the last. For example, ar 

is encrypted as RM. 

➢  Two plaintext letters that fall in the same column are each replaced by the letter beneath, 
with the top element of the column circularly following the last. For example, mu is 

encrypted as CM. 

➢  Otherwise, each plaintext letter in a pair is replaced by the letter that lies in its own row 

and the column occupied by the other plaintext letter. Thus, hs becomes BP and ea 

becomes IM (or JM, as the encipherer wishes). 

c.Hill Cipher 

Another interesting multiletter cipher is the Hill cipher, developed by the mathematician Lester 

Hill in 1929. The encryption algorithm takes m successive plaintext letters and substitutes for 

them m ciphertext letters. The substitution is determined by m linear equations in which each 

character is assigned a numerical value (a = 0, b = 1 ... z = 25). For m = 3, the system can be 

described as follows: 

c1 = (k11P1 + k12P2 + k13P3) mod 26 

c2 = (k21P1 + k22P2 + k23P3) mod 26 

c3 = (k31P1 + k32P2 + k33P3) mod 26 

This can be expressed in term of column vectors and matrices: 

 
or 

C = KP mod 26 

where C and P are column vectors of length 3, representing the plaintext and ciphertext, and K is 

a 3 x 3 matrix, representing the encryption key. Operations are performed mod 26. 
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For example, consider the plaintext "paymoremoney" and use the encryption key 

 
The first three letters of the plaintext are represented by the vector 

 
the ciphertext for the entire plaintext is LNSHDLEWMTRW. 

Decryption requires using the inverse of the matrix K. The inverse K1 of a matrix K is 

defined by the equation KK-1 = K-1K = I, where I is the matrix that is all zeros except for ones 

along the main diagonal from upper left to lower right. The inverse of a matrix does not always 

exist, but when it does, it satisfies the preceding equation. In this case, the inverse is: 

 
 

If key is 2 × 2 matrix , take two plain text at a time 

Suppose that the plaintext "friday" is encrypted using a 2 x 2 Hill cipher to yield the ciphertext 

PQCFKU. Thus, we know that 

 
Using the first two plaintext-ciphertext pairs, we have 

 
The inverse of X can be computed: 

 

so 

 
This result is verified by testing the remaining plaintext-ciphertext pair. 

d.Polyalphabetic Ciphers: 

Another way to improve on the simple monoalphabetic technique is to use different 

monoalphabetic substitutions as one proceeds through the plaintext message. The general name 

for this approach is polyalphabetic substitution cipher. 

All these techniques have the following features in common: 

➢  A set of related monoalphabetic substitution rules is used. 

➢  A key determines which particular rule is chosen for a given transformation 
To aid in understanding the scheme and to aid in its use, a matrix known as the Vigenère tableau 

is constructed.(Figure 1.6). Each of the 26 ciphers is laid out horizontally, with the key letter for 

each cipher to its left. A normal alphabet for the plaintext runs across the top. The process of 
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encryption is simple: Given a key letter x and a plaintext letter y, the ciphertext letter is at the 

intersection of the row labeled x and the column labeled y; in this case the ciphertext is V. 
 

Figure 1.6 . The Modern Vigenère Tableau 

 

To encrypt a message, a key is needed that is as long as the message. Usually, the key is a 

repeating keyword. For example, if the keyword is deceptive, the message "we are discovered 

save yourself" is encrypted as follows: 

key: deceptivedeceptivedeceptive 

plaintext: wearediscoveredsaveyourself 

ciphertext: ZICVTWQNGRZGVTWAVZHCQYGLMGJ 

Decryption is equally simple. The key letter again identifies the row. The position of the 

ciphertext letter in that row determines the column, and the plaintext letter is at the top of that 

column. 

1.9 TRANSPOSITION TECHNIQUES 
All the techniques examined so far involve the substitution of a ciphertext symbol for a plaintext 

symbol. A very different kind of mapping is achieved by performing some sort of permutation on 

the plaintext letters. This technique is referred to as a transposition cipher. 

The simplest such cipher is the rail fence technique, in which the plaintext is written down as a 

sequence of diagonals and then read off as a sequence of rows. For example, to encipher the 

message "meet me after the toga party" with a rail fence of depth 2, we write the following: 
m e m a t r h t g p r y 

e t e f e t e o a a t 

The encrypted message is 
MEMATRHTGPRYETEFETEOAAT 

This sort of thing would be trivial to cryptanalyze. A more complex scheme is to write the 

message in a rectangle, row by row, and read the message off, column by column, but permute 
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the order of the columns. The order of the columns then becomes the key to the algorithm. For 

example, 

Key: 4 3 1 2 5 6 7 

Plaintext:       a t t a c k p 

o s t p o n e 

d u n t i l t 

w o a m x y z 

Ciphertext: TTNAAPTMTSUOAODWCOIXKNLYPETZ 

A pure transposition cipher is easily recognized because it has the same letter frequencies as the 

original plaintext. For the type of columnar transposition just shown, cryptanalysis is fairly 

straightforward and involves laying out the ciphertext in a matrix and playing around with 

column positions. Digram and trigram frequency tables can be useful. 

The transposition cipher can be made significantly more secure by performing more than one 

stage of transposition. The result is a more complex permutation that is not easily reconstructed. 

Thus, if the foregoing message is reencrypted using the same algorithm, 

Key: 4 3 1 2 5 6 7 

Input: t t n a a p t 

m t s u o a o 

d w c o i x k 

n l y p e t z 

Output: NSCYAUOPTTWLTMDNAOIEPAXTTOKZ 

1.10. ROTOR MACHINES 
The basic principle of the rotor machine is illustrated in Figure 1.7. The machine consists of a set 

of independently rotating cylinders through which electrical pulses can flow. Each cylinder has 

26 input pins and 26 output pins, with internal wiring that connects each input pin to a unique 

output pin. For simplicity, only three of the internal connections in each cylinder are shown. 
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Figure 1.7. Three-Rotor Machine with Wiring Represented by Numbered Contacts 

If we associate each input and output pin with a letter of the alphabet, then a single cylinder 

defines a monoalphabetic substitution. For example, in Figure 1.7, if an operator depresses the 

key for the letter A, an electric signal is applied to the first pin of the first cylinder and flows 

through the internal connection to the twenty-fifth output pin. 

Consider a machine with a single cylinder. After each input key is depressed, the cylinder rotates 

one position, so that the internal connections are shifted accordingly. Thus, a different 

monoalphabetic substitution cipher is defined. After 26 letters of plaintext, the cylinder would be 

back to the initial position. Thus, we have a polyalphabetic substitution algorithm with a period 

of 26. 

A single-cylinder system is trivial and does not present a formidable cryptanalytic task. The 

power of the rotor machine is in the use of multiple cylinders, in which the output pins of one 

cylinder are connected to the input pins of the next. Figure 1.7 shows a three-cylinder system. 

The left half of the figure shows a position in which the input from the operator to the first pin 

(plaintext letter a) is routed through the three cylinders to appear at the output of the second pin 

(ciphertext letter B). 

With multiple cylinders, the one closest to the operator input rotates one pin position with each 

Key stroke. The right half of Figure 1.7 shows the system's configuration after a single 

keystroke. For every complete rotation of the inner cylinder, the middle cylinder rotates one pin 

position. Finally, for every complete rotation of the middle cylinder, the outer cylinder rotates 

one pin position. This is the same type of operation seen with an odometer. The result is that 

there are 26 x 26 x 26 = 17,576 different substitution alphabets used before the system repeats. 

The addition of fourth and fifth rotors results in periods of 456,976 and 11,881,376 letters, 

respectively. 
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1.11. STEGANOGRAPHY 

A plaintext message may be hidden in one of two ways. The methods of steganography conceal 

the existence of the message, whereas the methods of cryptography render the message 

unintelligible to outsiders by various transformations of the text 

A simple form of steganography, but one that is time-consuming to construct, is one in which an 

arrangement of words or letters within an apparently innocuous text spells out the real message. 

For example, the sequence of first letters of each word of the overall message spells out the 

hidden message. Figure 1.8 shows an example in which a subset of the words of the overall 

message is used to convey the hidden message. 

 
Figure 1.8. A Puzzle for Inspector Morse 

Various other techniques have been used historically; some examples are the following 

➢  Character marking: Selected letters of printed or typewritten text are overwritten in 

pencil. The marks are ordinarily not visible unless the paper is held at an angle to bright 

light. 

➢  Invisible ink: A number of substances can be used for writing but leave no visible trace 
until heat or some chemical is applied to the paper. 

➢   Pin punctures: Small pin punctures on selected letters are ordinarily not visible unless 
the paper is held up in front of a light. 

➢  Typewriter correction ribbon: Used between lines typed with a black ribbon,  the 
results of typing with the correction tape are visible only under a strong light. 

Although these techniques may seem archaic, they have contemporary equivalents. [WAYN93] 

proposes hiding a message by using the least significant bits of frames on a CD. For example, the 

Kodak Photo CD format's maximum resolution is 2048 by 3072 pixels, with each pixel 

containing 24 bits of RGB color information. The least significant bit of each 24-bit pixel can be 

changed without greatly affecting the quality of the image. The result is that you can hide a 2.3- 

megabyte message in a single digital snapshot. There are now a number of software packages 

available that take this type of approach to steganography. 

Steganography has a number of drawbacks when compared to encryption. It requires a lot of 

overhead to hide a relatively few bits of information, although using some scheme like that 

proposed in the preceding paragraph may make it more effective. Also, once the system is 

discovered, it becomes virtually worthless. This problem, too, can be overcome if the insertion 

method depends on some sort of key . Alternatively, a message can be first encrypted and then 

hidden using steganography. 

The advantage of steganography is that it can be employed by parties who have something to 
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lose should the fact of their secret communication (not necessarily the content) be discovered. 

Encryption flags traffic as important or secret or may identify the sender or receiver as someone 

with something to hide. 

 

Reference Book : 

Cryptography and Network Security Principles and Practices, Fourth Edition,By William 

Stallings 



 

UNIT-2 

 

Block Cipher principles: 

● A block cipher is an encryption/decryption scheme in which a block of plaintext is treated 

as a whole and used to produce a ciphertext block of equal length. 

● Many block ciphers have a Feistel structure. Such a structure consists of a number of 

identical rounds of processing. In each round, a substitution is performed on one half of the 

data being processed, followed by a permutation that interchanges the two halves. The 

original key is expanded so that a different key is used for each round. 

● The Data Encryption Standard (DES) has been the most widely used encryption algorithm 

until recently. It exhibits the classic Feistel structure. DES uses a 64-bit block and a 56-

bitkey. 

Stream Ciphers and Block Ciphers: 

● A stream cipher is one that encrypts a digital data stream one bit or one byte at a 

time. Examples of classical stream ciphers are the auto keyed Vigenère cipher and the 

Vernam cipher. 

● A block cipher is one in which a block of plaintext is treated as a whole and used to 

produce a cipher text block of equal length. 

● Typically, a block size of 64 or 128 bits is used. As with a stream cipher, the two users 

share a 

symmetric encryption key 

 

 

 

 

 

 

 

 

 

 



 

 

The Feistel Cipher: 

Feistel proposed that we can approximate the ideal block cipher by utilizing the concept of 
a product cipher, which is the execution of two or more simple ciphers in sequence in such a way 

that the final result or product is cryptographically stronger than any of the component ciphers. 

The essence of the approach is to develop a block cipher with a key length of k bits and a block 

length of n bits, allowing a total of 2k possible transformations, rather than the 2n! transformations 
available with the ideal block cipher. 

In particular, Feistel proposed the use of a cipher that alternates substitutions and 

permutations, where these terms are defined as follows: 

 Substitution: Each plaintext element or group of elements is uniquely replaced by a 

corresponding ciphertextelement or group of elements. 

 Permutation: A sequence of plaintext elements is replaced by a permutation of that 

sequence. That is, no elements are added or deleted or replaced in the sequence, rather the 

order in which the elements appear in the sequence is changed. 

 

Feistel’s is a practical application of a proposal by Claude Shannon to develop a product cipher 

that alternates confusion and diffusion functions 

 

 

FEISTEL CIPHER STRUCTURE:  

The left-hand side of Figure depicts the structure proposed by Feistel. The inputs to the 
encryption algorithm are a plaintext block of length 2w bits and a key. The plaintext block is 

divided into two halves, L0 and R0. The two halves of the data pass through n rounds of processing 

and then combine to produce the ciphertext block. Each round i has as inputs Li-1 and Ri-1 derived 

from the previous round, as well as a subkey Ki derived from the overall K. In general, the subkeys 

Ki are different from K and from each other. 

All rounds have the same structure. A substitution is performed on the left half of the data. 

This is done by applying a round function F to the right half of the data and then taking the 

exclusive-OR of the output of that function and the left half of the data. The round function has the 

same general structure for each round butis parameterized by the round subkey Ki. 

Permutation is performed that consists of the interchange of the two halves of the data. 
This structure is a particular form of the substitution-permutation network (SPN) proposed by 
Shannon. The exact realization of a Feistel network depends on the choice of the following 

parameters and design features: 

● Block size: Larger block sizes mean greater security (all other things being equal) but 

reduced encryption/decryption speed for a given algorithm. The greater security is 

achieved by greater diffusion. Traditionally, a block size of 64 bits has been considered 

a reasonable tradeoff and was nearly universal in block cipher design. However, the new 

AES uses a 128-bit block size. 

● Key size: Larger key size means greater security but may decrease encryption/ decryption 

speed. The greater security is achieved by greater resistance to brute-force attacks and 

greater confusion. Key sizes of 64 bits or less are now widely considered to be inadequate, 

and 128 bits has become acommon size. 

● Number of rounds: The essence of the Feistel cipher is that a single round offers 

inadequate security but that multiple rounds offer increasing security. A typical size is 



 

16rounds. 

 

 

Fig: Feistel Cipher structures



 

● Subkey generation algorithm: Greater complexity in this algorithm should lead to greater 

difficulty ofcryptanalysis. 

● Round function F: Again, greater complexitygenerally means greater resistance to 

cryptanalysis. There are two other considerations in the design of a Feistel cipher: 

● Fast software encryption/decryption: In many cases, encryption is embedded in applications 

or 

utility functions in such a way as to preclude a hardware implementation. Accordingly, the 

speed of execution of the algorithm becomes aconcern. 

Ease of analysis: Although we would like to make our algorithm as difficult as possible to cryptanalyze, 

there is great benefit in making the algorithm easy to analyze. That is, if the algorithm can be concisely 

and clearly explained, i t is easier to analyze that algorithm for cryptanalytic vulnerabilities and therefore 

develop a higher level of assurance as to its strength. DES, for example, does not have an easily analysed 

functionality. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Feistel Decryption Algorithm: 

The process of decryption with a Feistel cipher is essentially the same as the encryption 

process. The rule is as follows: 

● Use the ciphertext as input to the algorithm, but use the sub keys K in reverse order. 

● That is, use Kn in the first round, Kn-1 in the second round, and so on until K is used in 

the last round. This is a nice feature because it means we need not implement two 

different algorithms, one for encryption and one for decryption. 

● To see that the same algorithm with a reversed key order produces the correct result, 

which shows the encryption process going down the left-hand side and the decryption 

process going up the right-hand side for a 16-round algorithm.



 

● For clarity, we use the notation LEi and REi for data traveling through the encryption 

algorithm and LDi and RDi for data traveling through the decryption algorithm. 

● The diagram indicates that, at every round, the intermediate value of the decryption 

process is equal to the corresponding value of the encryptionprocess with the two halves 

of the value swapped. 

● After the last iteration of the encryption process, the two halves of the output are 

swapped, so that the ciphertext is RE16||LE16. The output of that round is the ciphertext. 

Now take that ciphertext and use it as input to the same algorithm. The input to the first 

round is RE16||LE16, which is equal to the 32-bit swap of the output of the sixteenth 

round of the encryption process. 

● If you clearly observe that the output of the first round of the decryption process is equal 

to a 32-bit swap of the input to the sixteenthround of the encryptionprocess. First, 

consider the encryption process. 

 

Data Encryption Standard: 

 DES is a Symmetric-key algorithm for the encryption of electronicdata. 

 DES originated at IBM in 1977& was adopted by the U.S Department of Defence. Now it 

is under the NIST (National Institute of Standard & Technology) 

 Data Encryption Standard (DES) is a widely-used method of data encryption using a 

private (secret) key 

 DES applies a 56-bit key to each 64-bit block of data. The process can run in several 

modes and involves 16rounds or operations. 

Inner workings of DES: 

DES (and most of the other major symmetric ciphers) is based on a cipher known as the Feistel 

block cipher. This was a block cipher developed by the IBM cryptography researcher Horst Feistel 

in the early 70’s. It consists of a number of rounds where each round contains bit-shuffling, non-

linear substitutions (S-boxes) and exclusive OR operations. Most symmetric encryption schemes 

today are based on this structure (known as a Feistel network). 

Overall structure 

DES (and most of the other major symmetric ciphers) is based on a cipher known as the Feistel 

block cipher. 

Looking at the left-hand side of the figure, we can see that the processing of the plaintext proceeds 

in three phases. 

 First, the 64-bit plaintext passes through an initial permutation (IP) that rearranges the bits 

to produce the permutedinput. 

 This is followedby a phase consisting of sixteen rounds of the same function, which involves 

both permutation and substitution functions. The output of the last (sixteenth) round consists 

of 64 bits that are a function of the input plaintext and the key. The left and right halves of 

the output are swapped to produce the preoutput. 

 Finally, the preoutput is passed through a permutation that is the inverse of the initial 

permutation function, to produce the 64-bit cipher text. With the exception of the initial and 

final permutations, DES has the exact structure of a Feistel cipher, 

 

 



 

The right-hand portion of below shows the way in which the 56-bit key is used. Initially, the 

key is passed through a permutation function. Then, for each of the sixteen rounds, a subkey (Ki ) 
is produced by the combination of a left circular shift and a permutation. The permutation function 

is the same for each round, but a different subkey is produced because of the repeated shifts of the 

key bits. 

 

Initial Permutation:  

The initial permutation and its inverse are defined by tables, as shown in Tables (a) and (b), 

respectively. The tables are to be interpreted as follows. The input to a table consists of 64 bits 

numbered from 1 to 64. The 64 entries in the permutation table contain a permutation of the 

numbers from 1 to 64. Each entry in the permutation table indicates the position of a numbered 

input bit in the output, which also consists of 64 bits. 

 
 

To see that these two permutation functions are indeed the inverse of each other, consider the 

following 64-bit input M: 
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Where stream cipher Mi is a binary digit. Then the permutation X = (IP(M)) is as follows: 

 

 

 
 

DETAILS OF SINGLE ROUND 

Below figure shows the internal structure of a single round. Again, begin by focusing on the 

left-hand side of the diagram. The left and right halves of each 64-bit intermediate value are treated 

as separate 32-bit quantities, labeled L (left) and R (right). As in any classic Feistel cipher, the 

overall processing at each round can be summarized in the following formulas: 

 

 

 

The round key Ki is 48 bits. The R input is 32 bits. This R input is first expanded to 48 bits 

by using a table that defines a permutation plus an expansion that involves duplication of 16 of the 

R bits (Table 3.2c). The resulting 48 bits are XORed with Ki . This 48-bit result passes through 

substitution function that produces a 32-bit output, which is permuted as defined by Table (d). The 

role of the S-boxes in the function F is illustrated in Figure 3.7. The substitution consists of a set of 

eight S-boxes, each of which accepts 6 bits as input and produces 4 bits as output. These 

transformations are defined in Table 3.3, which is interpreted as follows: The first and last bits of 

the input to box Si form a 2-bit binary number to select one of four substitutions defined by the four 

rows in the table for. The middle four bits select one of the sixteen columns. The decimal value in 

the cell selected by the row and column is then converted to its 4-bit representation to produce the 

 
 
 

C

SE 



 

output. 

  

For example, in S1, for input 011001, the row is 01 (row 1) and the column is 1100 (column 

12). The value in row 1, column 12 is 9, so the output is 1001. Each row of an S-box defines a 
general reversible substitution. Figure 3.2 may be useful in understanding the mapping. The figure 

shows the substitution for row 0 of box S1. The operation of the S-boxes is worth further comment. 

Ignore for the moment the contribution of the key (Ki). If you examine the expansion table, you see 

that the 32 bits of input are split into groups of 4 bits and then become groups of 6 bits by taking 
the outer bits from the two adjacent groups. For example, if part of the input word is 

... efgh ijkl mnop ... This becomes ... defghi hijklm lmnopq ... 

 

 

The outer two bits of each group select one of four possible substitutions (one row of an S-box). 

Then a 4-bit output value is substituted for the particular 4-bit input (the middle four input bits). 

The 32-bit output from the eight S-boxes is then permuted, so that on the next round, the output 

from each S-box immediately affects as many others as possible. 

 
Substitution Boxes S: Have eight S-boxes which map 6 to 4 bits. Each S-box is actually 4 little 4 

bit boxes. Outer bits 1 & 6 (row bits) select one rows. inner bits 2-5 (col bits) are substituted. Result 

is 8 lots of 4 bits, or 32 bits. Row selection depends on both data & key 

 

KEY GENERATION: 

Returning to above all figures, we see that a 64-bit key is used as input to the algorithm. 
The bits of the key are numbered from 1 through 64; every eighth bit is ignored, as indicated by the 

lack of shading in Table 3.4a. The key is first subjected to a permutation governed by a table labeled 
Permuted Choice One (Table 3.4b) 

The resulting 56-bit key is then treated as two 28-bit quantities, labeled C0 and D0. At each round, 

Ci-1 and Di-1 are separately subjected to a circular left shift or (rotation) of 1 or 2 bits, as governed 

by Table 3.4d. These shifted values serve as input to the next round. They also serve as input to the 

part labeled Permuted Choice Two (Table 3.4c), which produces a 48-bit output that serves as input 

to the Function F(Ri-1, Ki). 

 

DES: 

Whatever process we following in the encryption that process is used for decryption also 
but the order of key is changed on input message (cipher text). 

Reverse order of keys are K16, K15 ,……, K1. 

The Avalanche Effect: 

 

● A desirable property of any encryption algorithm is that a small change in either the 

plaintext or the key should produce a significant change in the ciphertext. 

● In particular, a change in one bit of the plaintext or one bit of the key should produce a 

change in many bits of the ciphertext. 



 

● This is referred to as the avalanche effect. 

THE STRENGTH OF DES: 

 

The Use of 56-Bit Keys: 

● With a key length of 56 bits, there are 256 possible keys, which is approximately 7.2 

x 1016. A brute-force attack appears impractical. Assuming that, on average, half the 

key space has to be searched, a single machine performing one DES encryption per 

microsecond would take more than a thousand years to break the cipher. Diffie and 

Hellman postulated that the technology existed to build a parallel machine with 1 

million encryption devices, each of which could perform one encryption per 

microsecond. This would bring the average search time down to about 10 hours. 

The Nature of the DES Algorithm: 

● Possibilities of cryptanalysis are done by finding the characteristics of DES algorithm. 

● Learning of S-Box logic is complex. 

● Weakness of the S-boxes not been discovered. 

Timing Attacks: 

● A timing attack is one in which information about the key or the plaintext is obtained 

by observing how long it takes a given implementation to perform decryptions on 

various ciphertexts. 

● A timing attack exploits the fact that an encryption or decryption algorithm often takes 

slightly different amounts of time on different inputs. 

● DES appears to be fairly resistant to a successful timing attack. 

 

Block Cipher Design Principles: 

There are three critical aspects of block cipher design: the number of rounds, design 

of the function F, and key scheduling. 

Number of Rounds: 

● The greater the number of rounds, the more difficult it is to perform cryptanalysis, even 

for a relatively weak F. 

● In general, the criterion should be that the number of rounds is chosen so that known 

cryptanalytic efforts require greater effort than a simple brute-force key search attack. 

This criterion was certainly used in the design of DES. 

 

Design of Function F: 

● The heart of a Feistel block cipher is the function F, which provides the element of 

confusion in a Feistel cipher. Thus, it must be difficult to “unscramble” the substitution 

performed by F. 

● F must be nonlinear. The more nonlinear F, the more difficult any type of cryptanalysis 

will be. 

 

Key Schedule Algorithm: 

● With any Feistel block cipher, the key is used to generate one subkey for each round. 

● In general, we would like to select subkeys to maximize the difficulty of deducing 

individual subkeys and the difficulty of working back to the main key. 

 

Triple DES(3DES): 



 

● Triple DES is simply another mode of DES operation. It takes three 64-bit keys, for an 

overall key length of 192 bits. 

● The Triple DES then breaks the user provided key into three subkeys, padding the keys 

if necessary so they are each 64 bits long. 

● The procedure for encryptionis exactlythe same as regular DES, but it is repeated three 

times. Hence the name Triple DES. The data is encrypted with the first key, decrypted 

with the second key, and finally encrypted again with the third key. 

ADVANCED ENCRYPTION STANDARD (AES): 

 The Advanced Encryption Standard (AES) was published by the National Institute 

of        Standards and Technology (NIST) in 2001. 

 AES is a block cipher intended to replace DES for commercial applications. 

 It uses a 128-bit block size and a key size of 128, 192, or 256 bits. 

 AES does not use a Feistel structure. Instead, each full round consists of four separate 

functions: byte substitution, permutation, arithmetic operations over a finite field, and XOR 

with a key. 

Rijndael was designed to have the following characteristics: 

 Resistance against all known attacks 

 Speed and code compactness on a wide range of platforms 

 Design simplicity 

AES parameters: 

Key size(words/bytes/bits) 4/16/128 6/24/192 8/32/256 

Plaintext block Size (words/bytes/bits) 4/16/128 4/16/128 4/16/128 

Number of rounds 10 12 14 

Round Key size (words/bytes/bits) 4/16/128 4/16/128 4/16/128 

Expanded key size (words/bytes) 44/176 52/208 60/240 

 

Inner Workings of a Round 

The algorithm begins with an Add round key stage followed by 9 rounds of four stages and a 

tenth round of three stages. This applies for both encryption and decryption with the exception that 

each stage of a round the decryption algorithm is the inverse of its counterpart in the encryption 

algorithm. The four stages are as follows: 

1. Substitute bytes 

2. Shift rows 

3. Mix Columns 

4. Add Round Key 

The tenth round simply leaves out the Mix Columns stage. The first nine rounds of the 

decryption algorithm consist of the following: 

1. Inverse Shift rows 

2. Inverse Substitute bytes 

3. Inverse Add Round Key 

4. Inverse Mix Columns 

Again, the tenth round simply leaves out the Inverse Mix Columns stage. Each of these stages 

will now be considered in more detail. 



 

 
             FIGURE: 7.1 overall structure of the AES algorithm 

Substitute Bytes 

This stage (known as SubBytes) is simply a table lookup using a 16×16 matrix of byte values 
called an s-box. This matrix consists of all the possible combinations of an 8-bit sequence  

(28 = 16 × 16 = 256). However, the s-box is not just a random permutation of these values and there 
is a well- defined method for creating the s-box tables. The designers of Rijndael showed how this 
was done unlike the s-boxes in DES for which no rationale was given. 

Figure 7.2: Data structures in the AES algorithm. 

Again the matrix that gets operated upon throughout the encryption is known as state. We will 

be concerned with how this matrix is effected in each round. For this particular round each byte is 

mapped into a new byte in the following way: the leftmost nibble of the byte is used to specify a 

particular row of the s-box and the rightmost nibble specifies a column. For example, the byte {95} 

(curly brackets represent hex values in FIPS PUB 197) selects row 9 column 5 which turns out to 

contain the value {2A}. This is then used to update the state matrix. Figure 7.3 depicts this idea. 



 

 

The Inverse substitute byte transformation makes use of an inverse s-box. In this case what 

is desired is to select the value {2A} and get the value {95}. Table 7.4 shows the two s-boxes and 

it can be verified that this is in fact the case. 

The s-box is designed to be resistant to known cryptanalytic attacks. Specifically, the 

Rijndael developers sought a design that has a low correlation between input bits and output bits, 

and the property that the output cannot be described as a simple mathematical function of the input. 

In addition, the s-box has no fixed points (s-box(a) = a) and no opposite fixed points (s-box(a) =   ) 

where is the bitwise compliment of a. 

Shift Rows Transformation: 

Shift row transformations are two types. 

 Forward Shift row transformation which is used in encryption. 

 Inverse Shift row transformation which is used in decryption. 

 

FORWARD SHIFT ROW TRANSFORMATION: 

▶  the first row of State matrix is not altered. 

▶  for the second row, a 1-byte circular left shift is performed. 

▶  for the third row, a 2-byte circular left shift is performed. 

▶  for the fourth row, a 3-byte circular left shift is performed. 

 

The following is an example of Shift Rows: 

 

INVERSE SHIFT ROWS: 

 
▶  Performs the circular shifts in the opposite direction for each of the last three rows, with a 

one- byte circular right shift for the second row and soon. 

MIX COLUMNS TRANSFORMATION: 

 

Mix columns transformations are two types. 

● Forward Mix columns transformation which is used in encryption. 



 

● Inverse Mix columns transformation which is used in decryption. 

 

Forward Mix columns transformation: 

 Forward Mix columns transformation called mix columns, operates on each column 

individually. Each byte of a column is mapped into a new value that is a function of all 4 

bytes in that column. The transformation can be defined by the following matrix 

multiplication on state. 

 
 

Inverse Mix columns transformation: 

 The inverse mix column transformation, called InvMixColumns, is defined by the following 

matrix multiplication: 

 

Add Round Key Transformation: 

▶  In the forward add round key transformation, called AddRoundKey, the 128 bits of State 
are bitwise XORed with the 128 bits of the round key. 

▶  The inverse add round key transformation is identical to the forward add round key transformation, 
because the XOR operation is its own inverse. 

 
 

AES Key Expansion: 

 The 128-bit key value can be expanded into 44 words i.e. 44X32=1408bits 

 In each round 4 words will be used i.e. 4x32=128 bits 

 In Add round key first 4 words w0, w1, w2, w3 are used. 

 In first round, w4, w5, w6, w7 are used and 
soon. The 128 bit key is expanded as follows 

▶  First 128 bit key is arranged as a 4x4 matrix each value size is 8-bits 

▶  The first 32 bits (k0, k1, k2, k3) is considered as w0. 

▶  The first 32 bits (k4, k5, k6, k7) is considered as w1. 

▶  The first 32 bits (k8, k9, k10, k11) is considered as w2. 

▶  The first 32 bits (k12, k13, k14, k15) is considered as w4. 

▶  Next 4 words w4, w5, w6, w7 are followed as 

w4=w0 ⊕ w3 

w5=w1 ⊕ w4 

w6=w2 ⊕w5 

w7=w3 ⊕w6 



 

 

Figure. AES Key Expansion 

 

BLOWFISH: 

⮚ Blow fish is a symmetric block cipherdeveloped by bruce schner in year 1993. 

⮚ Blow fish is designed to have following characteristics 

✔ Speed: Blowfish encrypts data on 32-bit microprocessor at a rate of 18 clock 

cycles per byte. 

✔ Compact: it can run in less than 5k memory. 

✔ Simple: very easy to implements. 

✔ Variably secure: the key length is variable and can be as long as 448 bits. This 

allows a trade-off between higher speed and higher security. 

⮚ Blowfish is a Feistel type model. 

 

BLOWFISH ALGORITHM: 

⮚ Blowfish is Feistel type model, iterating a simple encryption function 16times. 

⮚ Blowfish block size is 64& key can be upto 448 bits. 

⮚ Blow fish encryption 64bits blocks of plaintext into 64-bit block of cipher. 

⮚ Blow fish make use of a key that ranges from 32bits to 448 bits (one to fourteen 

32 bit keys). 

⮚ The keys are stored in a k-array (one to 14 32 

bits) K1,K2 Kj where 1≤ j ≤14. 

⮚ That key is used to generate 18 “32 bit” subkeys & four “8*32”bits S-boxes. 

⮚ The subkeys are stored in the p- array P1,P2, P18 

There are four s-boxes (each s-box size is 8*32 bits) each with 256 32bit entries. 

S1,0, S1,1, S1,255 
S2,0, S2,1, S2,255 
S3,0, S3,1, S3,255 
S4,0, S4,1, S4,255 

The steps in generating the P-array & S-boxes as follows. 

 

Step1: Initialize first the P-array and then 4 s-boxes in order using the bits of fractional part 

of the constant п. 

Step 2: Perform a bitwise xor of the P-array & k-array, reusing words from the k-array as 

needed.    

Example   

P1 = P1 ⊕ K1 

P2 = P1 ⊕ K2 

... 

P14 = P14 ⊕ K14 

P15 = P15 ⊕ K1 



 

P16 = P1 ⊕ K2 

P17 = P1 ⊕ K3 

P18 = P1 ⊕ K4 



 

Step 3: Encrypt the 64 bit block of all zeros using the current P & S-arrays, Replace P1&P2 

with the output of the encryption. 

Step 4: Encrypt the output of step 3 using the current P- and S-arrays and replace P3, and P4, 

with the resulting ciphertext. 

 

Step 5: Continue this process to update all elements of P and then, in order, all elements of S, 

using at each step the output of the continuously changing Blowfish algorithm. 

 
 

The update process can be summarized as follows 

 

Where Ep,s[Y] is the ciphertext produced by encrypting Y using Blowfish with the arrays S and P. 

 

⮚ A total of 521 executions of the Blowfish encryption algorithm are required to produce 
the final S- and P-arrays. 

⮚ Accordingly, Blowfish is not suitable for applications in which the secret key changes 

frequently. Further, for rapid execution, the P- and S-arrays can be stored rather than 

derived from the key each time the algorithm is used. 

⮚ This requires over 4 kilobytes of memory. Thus, Blowfish is not appropriate for 

applications with limited memory, such as smart cards. 

Encryption and Decryption 

Blowfish uses two primitive operations: 

⮚ Addition: Addition of words, denoted by +, is performed modulo 232. 

⮚ Bitwise exclusive-OR: This operation is denoted by 



 

 
 

In the above figure the encryption operation. The plaintext is divided into two 32-bit halves 

LE, and RE,. We use the variables LE, and RE, to refer to the left and right half of the data after 

round i has completed. The algorithm can be defined by the following pseudo code: 

 

The function F is shown in below Figure. The 32-bit input to F is divided into 4 bytes. If 

we label those bytes a, b, c, and d, then the function can be defined as follows: 

 

Blowfish Decryption: 

Blowfish decryption occurs in the same algorithmic direction as encryption. Rather than 

the   reverse. The algorithm can be defined as follows: 

 



 

 

Advantages or features of blowfish: 

 

⮚ A brute-force attack is even more difficult than may be apparent from the key length 

because of the time-consuming subkey-generation process. A total of 522 executions of 

the encryption algorithm are required to test a single key. 

⮚ The function F gives Blowfish the best possible avalanche affect for a Feistel network: In 

round i, every bit of Li-1, affects every bit of Ri-1. In addition, every subkey bit is affected 

by every key bit. and therefore F has a perfect avalanche effect between the key (P,) and 

the right half of the data (R,) after every round. 

⮚ Every bit of the input to F is only used as input to one S-box. In contrast. In DES, many 

bits are used as inputs to two S-boxes. which strengthens the algorithm considerably 

against differential attacks. Schneier felt that this added complexity was not necessary 

with key-dependent S-boxes. 

⮚ Unlike in CAST, the function F in Blowfish is not round dependent. Schneier felt that 

such dependency did not add any cryptographic merit, given that the P-array substitution 

is already round dependent. 

 

Block Cipher Modes of Operation: 

 

A block cipher algorithm is a basic building block for providing data security. To apply a 

block cipher in a variety of applications, different "modes of operation" have been defined by 

NIST. In essence, a mode of operation is a technique for enhancing the effect of a cryptographic 

algorithm or adapting the algorithm for an application, such as applying a block cipher to a 

sequence of data blocks or a data stream. The modes are intended to cover virtually all the possible 

applications of encryption for which a block cipher could be used. 

Electronic Codebook Mode: 

 

The simplest mode is the electronic codebook (ECB) mode, in which plaintext is handled 

one block at a time and each block of plaintext is encrypted using the same key (Figure a & b). 

The term codebook is used because, for a given key, there is a unique ciphertext for every b-bit 

block of plaintext. For a message longer than b bits, the procedure is simply to break the message 

into b-bit blocks, padding the last block if necessary. Decryption is performed one block at a time, 

always using the same key. In Figure, the plaintext (padded as necessary) consists of a sequence 

of b-bit blocks, P1, P2... PN; the corresponding sequence of ciphertext blocks is C1, C2,..., CN. 

 
 

Figure. Electronic Codebook (ECB) Mode 

 

The ECB method is ideal for a short amount of data, such as an encryption key. Thus, if 

you want to transmit a DES key securely, ECB is the appropriate mode to use. The most 

significant characteristic of ECB is that the same b-bit block of plaintext, if it appears more than 

once in the message, always produces the same ciphertext. 



 

For lengthy messages, the ECB mode may not be secure. If the message is highly 

structured, it may be possible for a cryptanalyst to exploit these regularities. For example, if it is 

known that the message always starts out with certain predefined fields, then the cryptanalyst 

may have a number of known plaintext-ciphertext pairs to work with. If the message has repetitive 

elements, with a period of repetition a multiple of b bits, then these elements can be identified by 

the analyst. This may help in the analysis or may provide an opportunity for substituting or 

rearranging blocks. 

Cipher Block Chaining Mode: 

To overcome the security deficiencies of ECB, we would like a technique in which the 

same plaintext block, if repeated, produces different ciphertext blocks. A simple way to satisfy 

this requirement is the cipher block chaining (CBC) mode. 

In this scheme, the input to the encryption algorithm is the XOR of the current plaintext 

block and the preceding ciphertext block; the same key is used for each block. In effect, we have 

chained together the processing of the sequence of plaintext blocks. The input to the encryption 

function for each plaintext block bears no fixed relationship to the plaintext block. Therefore, 

repeating patterns of b bits are not exposed. 

 

Figure: Cipher Block Chaining (CBC) Mode 

 

For decryption, each cipher block is passed through the decryption algorithm. The result is 

XORed with the preceding ciphertext block to produce the plaintext block. To produce the first 

block of ciphertext, an initialization vector (IV) is XORed with the first block of plaintext. On 

decryption, the IV is XORed with the output of the decryption algorithm to recover the first block 

of plaintext. The IV is a data block that is that same size as the cipher block. The IV must be 

known to both the sender and receiver but be unpredictable by a third party. For maximum 

security, the IV should be protected against unauthorized changes. This could be done by sending 

the IV using ECB encryption. Because of the chaining mechanism of CBC, it is an appropriate 

mode for encrypting messages of length greater than b bits. CBC mode can be used for 

authentication. 

Cipher Feedback Mode: 

 

The DES scheme is essentially a block cipher technique that uses b-bit blocks. However, 

it is possible to convert DES into a stream cipher, using either the cipher feedback (CFB) or the 

output feedback mode. Figure depicts the CFB scheme. In the figure, it is assumed that the unit 

of transmission is s bits; a common value is s = 8. As with CBC, the units of plaintext are chained 

together, so that the ciphertext of any plaintext unit is a function of all the preceding plaintext. In 

this case, rather than units of b bits, the plaintext is divided into segments of s bits. 

First, consider encryption. The input to the encryption function is a b-bit shift register that is 

initially set to some initialization vector (IV). The leftmost (most significant) s bits of the output 

of the encryption function are XORed with the first segment of plaintext P1 to produce the first 



 

unit of ciphertext C, which is then transmitted. In addition, the contents of the shift register are 

shifted left by s bits and C is placed in the rightmost (least significant) s bits of the shift register. 

This process continues until all plaintext units have been encrypted. 

For decryption, the same scheme is used, except that the received ciphertext unit is XORed 

with the output of the encryption function to produce the plaintext unit. 

Let Ss(X) be defined as the most significant s bits 

of X. Then C1 = P1⊕ Ss[E(K,IV)] 

Therefore, 

P1 = C1 ⊕ Ss [E(K, IV)] 

 

Figure: s-bit Cipher Feedback (CFB) Mode 

 

Output Feedback Mode: 

The output feedback (OFB) mode is similar in structure to that of CFB, as illustrated in Figure. 

As can be seen, it is the output of the encryption function that is fed back to the shift register in 

OFB, whereas in CFB the ciphertext unit is fed back to the shift register. One advantage of the 

OFB method is that bit errors in transmission do not propagate. For example, if a bit error occurs 

in C1 only the recovered value of is P1 affected; subsequent plaintext units are not corrupted. 

With CFB, C1 also serves as input to the shift register and therefore causes additional corruption 

downstream. The disadvantage of OFB is that it is more vulnerable to a message stream 

modification attack than is CFB. 



 

 

Figure: S-bit Output Feedback (OFB) Mode 

Counter Mode: 

In CTR mode a counter, equal to the plaintext block size is used. The only requirement is 

that the counter value must be different for each plaintext block that is encrypted. Typically, the 

counter is initialized to some value and then incremented by 1 for each subsequent block. For 

encryption, the counter is encrypted and then XOR end with the plaintext block to produce the 

ciphertext block; there is no chaining. For decryption, the same sequence of counter values is 

used, with each encrypted counter XOR end with a ciphertext block to recover the corresponding 

plaintext block. 

Advantages: 

1. Hardware efficiency 

2. Software efficiency 

3. Preprocessing 

4. Random access 

5. Provable security 

6. Simplicity 



 

 
 

Figure: Counter (CTR) Mode 

 

STREAM CIPHER:  

 A typical stream cipher encrypts plaintext one byte at a time, although a stream cipher may be 

designed to operate on one bit at a time or on units larger than a byte at a time.  

 

 

Figure: representative diagram of stream cipher structure. 

In this structure, a key is input to a pseudorandom bit generator that produces a stream of 8-bit 

numbers that are apparently random. The output of the generator, called a keystream, is combined one 

byte at a time with the plaintext stream using the bitwise exclusive-OR (XOR) operation. 

Example, if the next byte generated by the generator is 01101100 and the next plaintext byte is 

11001100, then the resulting ciphertext byte is 

 
Important design considerations for a stream cipher: 

1. The encryption sequence should have a large period. A pseudorandom number generator uses a 

function that produces a deterministic stream of bits that eventually repeats. The longer the 

period of repeat the more difficult it will be to do cryptanalysis. This is essentially the same 

consideration that was discussed with reference to the Vigenère cipher, namely that the longer 

the keyword the more difficult the cryptanalysis. 

2. The keystream should approximate the properties of a true random number stream as close as 

possible. For example, there should be an approximately equal number of 1s and 0s. If the 



 

keystream is treated as a stream of bytes, then all of the 256 possible byte values should appear 

approximately equally often. The more random-appearing the keystream is, the more 

randomized the ciphertext is, making cryptanalysis more difficult. 

3. Note from Figure 7.7 that the output of the pseudorandom number generator is conditioned on 

the value of the input key. To guard against brute-force attacks, the key needs to be sufficiently 

long. The same considerations that apply to block ciphers are valid here. Thus, with current 

technology, a key length of at least 128 bits is desirable. 

 

With a properly designed pseudorandom number generator, a stream cipher can be as secure as a 

block cipher of comparable key length. A potential advantage of a stream cipher is that stream ciphers 

that do not use block ciphers as a building block are typically faster and use far less code than do block 

ciphers. 

RC4: 

RC4 is a stream cipher designed in 1987 by Ron Rivest for RSA Security. It is a variable key 

size stream cipher with byte-oriented operations. The algorithm is based on the use of a random 

permutation. The RC4 algorithm is remarkably simple and quite easy to explain. 

 A variablelength key of from 1 to 256 bytes (8 to 2048 bits) is used to initialize a 256-byte state 

vector S, with elements S[0],S[1], c,S[255]. At all times, S contains a permutation of all 8-bit numbers 

from 0 through 255. For encryption and decryption, a byte k is generated from S by selecting one of the 

255 entries in a systematic fashion. As each value of k is generated, the entries in S are once again 

permuted. 

Initialization of S 

To begin, the entries of S are set equal to the values from 0 through 255 in ascending order; that is, 

S[0] = 0, S[1] = 1, c, S[255] = 255 . A temporary vector, T, is also created. If the length of the key K is 

256 bytes, then K is transferred to T. Otherwise, for a key of length keylen bytes, the first keylen 

elements of T are copied from K, and then K is repeated as many times as necessary to fill out T. These 

preliminary operations can be summarized as  

/* Initialization */ 

for i = 0 to 255 do 

S[i] = i; 

T[i] = K[i mod keylen]; 

Next we use T to produce the initial permutation of S. This involves starting with S[0] and going 

through to S[255], and for each S[i], swapping S[i] with another byte in S according to a scheme dictated 

by T[i]: 

/* Initial Permutation of S */ 

j = 0; 

for i = 0 to 255 do 

 j = (j + S[i] + T[i]) mod 256; 

Swap (S[i], S[j]); 

Because the only operation on S is a swap, the only effect is a permutation. S still contains all the 

numbers from 0 through 255. 

Once the S vector is initialized, the input key is no longer used. Stream generation involves cycling 

through all the elements of S[i], and for each S[i], swapping S[i] with another byte in S according to a 

scheme dictated by the current configuration of S. After S[255] is reached, the process continues, 

starting over again at S[0]: 

/* Stream Generation */ 

i, j = 0; 

while (true) 

 i = (i + 1) mod 256; 

 j = (j + S[i]) mod 256; 

Swap (S[i], S[j]); 

t = (S[i] + S[j]) mod 256; 



 

k = S[t]; 

To encrypt, XOR the value k with the next byte of plaintext. To decrypt, XOR the value k with 

the next byte of ciphertext. Following figure illustrates the RC4 logic. 

 

 

 

PUBLIC KEY CRYPTOGRAPHY: 

Introduction: 

 

● Asymmetric encryption is a form of cryptosystem in which encryption and decryption are 

performed using the different keys - one a public key and one a private key. It is also known 

as public-key encryption. 

● Asymmetric encryption transforms plaintext into ciphertext using a one of two keys and an 

encryption algorithm. Using the paired key and a decryption algorithm, the plaintext is 

recovered from the ciphertext. 

● Asymmetric encryption can be used for confidentiality, authentication, or both. 

● The most widely used public-key cryptosystem is RSA. 

 

Principles of Public-Key Cryptosystems: 

 

The concept of public key cryptography in invented for two most difficult problems of 

Symmetric key encryption. 

▪  key distribution – how to have secure communications in general without having to trust a 

KDC (key distribution center) with yourkey. 

▪  digital signatures – how to verify a message comes intact from the claimed sender. 

 

 

Public-Key Cryptosystems: 

 

A public-key encryption scheme has six ingredients 

 



 

● Plaintext: This is the readable message or data that is fed into the algorithm as input. 

● Encryption algorithm: The encryption algorithm performs various transformations on the 

plaintext. 

● Public and private keys: This is a pair of keys that have been selected so that if one is 

used for encryption, the other is used for decryption. The exact transformations performed 

by the algorithm depend on the public or private key that is provided as input. 

● Ciphertext: This is the scrambled message produced as output. It depends on the plaintext 

and the key. For a given message, two different keys will produce two different ciphertexts. 

● Decryption algorithm: This algorithm accepts the ciphertext and the matching key and 

produces the original plaintext. 

 

The essential steps are the following: 

1. Each user generates a pair of keys to be used for the encryption and decryption of messages. 

2. Each user places one of the two keys in a public register or other accessible file. This is the 

public key. The companion key is kept private. Each user maintains a collection of public 

keys obtained from others. 

3. If Bob wishes to send a confidential message to Alice, Bob encrypts the message using 

Alice's public key. 

4. When Alice receives the message, she decrypts it using her private key. No other recipient 

can decrypt the message because only Alice knows Alice's private key. 

ENCRYPTION: 

The plaintext is encrypted with receiver’s public key and decrypted using receiver private key. 

 

AUTHENTICATION: 

● Plaintext is encrypted is sender’s private key and decrypted using sender’s publickey. 

● The act of messages ciphertext getting decrypted by sender’s public key is the proof 

that the message is actually sent by the designated sender. 

 
  



 

 Difference between symmetric and public key encryption: 

 

● Examples for conventional encryption are DES, AES,IDEA and Blowfish. 

● Examples for public key encryption are RSA, Diffie-Hellman, Elliptic 

Curve Cryptography. 

There is some source A that produces a message in plaintext, X =[X1,X2,..., XM,]. The M 

elements of X are letters in some finite alphabet. The message is intended for destination B.  

B generates a related pair of keys: a public key, PUb, and a private key, PRb. PRb is known   

only   to   B, whereas PUb is publicly available and therefore accessible by A. 

With the message X and the encryption key PUb as input, A forms the ciphertext  

Y = [Y1, Y2,...,YN]: 

Y = E(PUb, X) 

The intended receiver, in possession of the matching private key, is able to invert the transformation:  

X = D(PRb, Y) 

 

 

Figure: public key cryptosystems: Secrecy (or) confidentiality 

 
 



 

Figure: Public-Key Cryptosystem: Authentication 

 

Figure: Public-Key Cryptosystem: Authentication and 

Secrecy 

 

Applications for Public-Key Cryptosystems: 

● Encryption/decryption: The sender encrypts a message with the recipient's public key. 

● Digital signature: The sender "signs"a message with its private key. Signing is 

achieved by a cryptographic algorithm applied to the message. 

● Key exchange: Two sides cooperate to exchange a session key. 

 

Requirements for Public-Key Cryptography: 

 

1. It is computationally easy for a party B to generate a pair (public key PUb, private key PRb). 

2. It is computationally easy for a sender A, knowing the public key and the message to 

be encrypted, M, to generate the corresponding ciphertext: C = E(PUb, M) 

3. It is computationally easy for the receiver B to decrypt the resulting ciphertext using 

the private key to recover the original message: M= D(PRb, C) = D[PRb, E(PUb, M)] 

4. It is computationally infeasible for an adversary, knowing the public key, PUb, to 

determine the private key,PRb. 

5. It is computationally infeasible for an adversary, knowing the public key, PUb, 

and a ciphertext, C, to recover the original message, M. 

We can add a sixth requirement that, although useful, is not necessary for all public-key 

applications: The two keys can be applied in either order: 

M = D[PUb, E(PRb, M)] = D[PRb, E(PUb, M)] 

 

RSA Algorithm 

⮚ It is the most common public key algorithm. 

⮚ This RSA name is get from its inventors first letter (Rivest (R), Shamir (S) and Adleman 

(A)) in the year 1977. 

⮚ The RSA scheme is a block cipher in which the plaintext & ciphertext are integers 

between 0 and n-1 for some n. 

⮚ A typical size for n is 1024 bits or 309 decimal digits. That is, n is less than 2
1024

 

 

Description of the Algorithm: 

⮚ RSA algorithm uses an expression with exponentials. 



 

⮚ In RSA plaintext is encrypted in blocks, with each block having a binary value less than 

some number n. that is, the block size must be less than or equal to log2(n)  

⮚ RSA uses two exponents e and d where e public and d private. 

⮚ Encryption and decryption are of following form, for some PlainText M and CipherText 

block C 

M=Cd mod = (Me mod n) d mod n =(Me)d mod n= Med mod n 

Both sender and receiver must know the value of n. 

The sender knows the value of e & only the receiver knows the value of d thus this is a public 

key encryption algorithm with a 

Publc key PU={e, n} Private key PR={d, n} 

Steps of RSA algorithm: 

Step 1: Select 2 prime numbers p & q  

Step 2: Calculate n=pq 

Step 3: Calculate Ø(n)=(p-1)(q-1) 

Step 4: Select or find integer e (public key) which is relatively prime to Ø(n). ie., e 

with gcd (Ø(n), e)=1 where 1<e< Ø(n). 

Step 5:  Calculate “d” (private key) by using following condition. d< Ø(n) 

Step 6: Perform encryption by using 

Step 7: perform Decryption by using 

Example: 

1. Select two prime numbers, p = 17 and q = 11. 

2. Calculate n = pq = 17 × 11 = 187. 

3. Calculate Ø(n) = (p - 1)(q - 1) = 16 × 10 = 160. 

4. Select e such that e is relatively prime to Ø(n) = 160 and less than Ø (n); we choose  

  e = 7. 

5. Determine d such that de ≡1 (mod 160) and d < 160.The correct value is d = 23,   

  because 23 * 7 = 161 = (1 × 160) + 1; 

 d can be calculated using the extended Euclid‟s algorithm 

6. The resulting keys are public key PU = {7, 187} and private key PR = {23, 187}. 

 

The example shows the use of these keys for a plaintext input of M= 88. For encryption, we 

need to calculate C = 887 mod 187. Exploiting the properties of modular arithmetic, we can do 

this as follows. 

 

 

 

 

 
The Security of RSA 

 



 
 

Four possible approaches to attacking the RSA algorithm are 

• Brute force: This involves trying all possible private keys. 

• Mathematical attacks: There are several approaches, all equivalent in effort to factoring the 

product of two primes. 

• Timing attacks: These depend on the running time of the decryption algorithm. 

• Chosen ciphertext attacks: This type of attack exploits properties of the RSA algorithm. 

Trapdoor one-way function 

▪  A trapdoor function is a function that is easy to perform one way, but has a secret that is 

required to perform the inverse calculation efficiently. 

▪  That is, if f is a trapdoor function, then y=f(x) is easy to compute, but x=f−1(y) is hard to 

compute without some special knowledge k. Given k, then it is easy to computey=f−1(x,k). 

▪  The analogy to a "trapdoor" is something like this: It's easy to fall through a trapdoor, but 

it's very hard to climb back out and get to where you started unless you have a ladder. 

▪  An example of such trapdoor one-way functions may be finding the prime factors of large 

numbers. Nowadays, this task is practically infeasible. 

▪  On the other hand, knowing one of the factors, it is easy to compute the other ones.  

▪  For example: RSA is a one-way trapdoor  function 

Diffie-Hellman Key Exchange: 

⮚ Diffie-Hellman key exchange is the first published public key algorithm 

⮚ This Diffie-Hellman key exchange protocol is also known as exponential key agreement. And 

it is based on mathematical principles. 

⮚ The purpose of the algorithm is to enable two users to exchange a key securely that can then 

be used for subsequent encryption of messages. 

⮚ This algorithm itself is limited to exchange of the keys. 

⮚ This algorithm depends for its effectiveness on the difficulty of computing discrete logarithms. 

⮚ The discrete logarithms are defined in this algorithm in the way of define a primitive root of a 

prime number. 

⮚ Primitive root: we define a primitive root of a prime number P as one whose power generate 

all the integers from 1 to P-1 that is if ‘a’ is a primitive root of the prime number P, then the 

numbers are distinct and consist of the integers form 1 through P-1 in some permutation. 

 

 

For any integer b and a, here a is a primitive root of prime number P, then 

b≡ a
i
mod P 0 ≤ i ≤ (P-1) 

The exponent i  is refer as discrete logarithm or index of b for the base a, mod P. The value 

denoted as ind a,p(b) 

 

 

Algorithm for Diffie-Hellman Key Exchange: 

Step 1: Select global public numbers q, α 

q- Prime number 

α- primitive root of q and α< q. 

Step 2: if A & B users wish to exchange a key 

a) User A select a random integer XA<q and computes 

b) User B independently select a random integer XB <q and computes 

c) Each side keeps the X value private and Makes the Y value available 

publicly to the outer side. 

 



 

 Step3: User A Computes the key as  

 

 User B Computes the key as 

 

Step 4: two calculation produce identical results 

The result is that the two sides have exchanged a secret key. 

 

Example: 

 

 

 

MAN-in the Middle Attack (MITM) 

Definition:  

A man in the middle attack is a form of eavesdropping where communication between two 

users is monitored and modified by an unauthorized party. Generally the attacker actively 

eavesdrops by intercepting (stopping) a public key message exchange. The Diffie- Hellman key 

exchange is insecure against a “Man in the middle attack”.  

Suppose user A & B wish to exchange keys, and D is the adversary (opponent). The attack 

proceeds as follows. 

1. D prepares for the attack by generating two random private keys XD1 & XD2 

and then computing the corresponding public keys YD1 and YD2. 

2. A transmits YA to B 

3. D intercepts YA and transmits YD1 to B. and D also calculates  

4. B receives YD1 & calculate  

5. B transmits YB to A 

6. D intercepts YB and transmits YD2 to „A‟ and „D‟ calculate K1  

7. A receives YD2 and calculates  

 

At this point, Bob and Alice think that they share a secret key, but instead Bob and Darth share 

secret key K1 and Alice and Darth share secret key K2. All future communication between Bob and 

Alice is compromised in the following way. 

 

The key exchange protocol is vulnerable to such an attack because it does not authenticate the 



 

participants. This vulnerability can be overcome with the use of digital signatures and public-key 

certificates. 



UNIT-III 

 

HASH FUNCTION: 

It is a one of the authentication function; it accepts a variable size message M as input and 

produces a fixed size output. 

A hash value ‘h’ is generated by a function H of the form 

 

 

M  variable length message H(M)  

fixed length hash value. 

The hash code is also referred as Message Digest (MD) or hash value. 

The main difference between Hash Function and MAC is a hash code does not use a key but is a 

function only of the input message. 

The hash value is appended to the message at the source at a time when the message is assumed or 

known to be correct. 

The receiver authenticates that message by re-computing the hash value. 

Hash functions are often used to determine whether or not data has changed. 

Figure 11.1 depicts the general operation of a cryptographic hash function 

 

 

 

 

 

 

  

h=H (M) 



APPLICATIONS OF CRYPTOGRAPHIC HASH FUNCTIONS 

It is used in a wide variety of security applications and Internet protocols 

Message Authentication 

Message authentication is a mechanism or service used to verify the integrity of a message. 

Message authentication assures that data received are exactly as sent (i.e., contain no 

modification, insertion, deletion, or replay) 

When a hash function is used to provide message authentication, the hash function value is often 

referred to as a message digest. 

Figure 11.2 illustrates a variety of ways in which a hash code can be used to provide message 

authentication, as follows. 

 

 

 

 

 

 

(a) The message plus concatenated hash code is encrypted using symmetric encryption. Because 

only A and B share the secret key, the message must have come from A and has not been altered. 

 

 

 

  



The hash code provides the structure or redundancy required to achieve authentication. Because 

encryption is applied to the entire message plus hash code, confidentiality is also provided. 

(b) Only the hash code is encrypted, using symmetric encryption. This reduces the processing 

burden for those applications that do not require confidentiality 

(c) It is possible to use a hash function but no encryption for message authentication. The 

technique assumes that the two communicating parties share a common secret value S.A 

computes the hash value over the concatenation of M and S and appends the resulting hash value 

to M. Because B possesses, it can recomputed the hash value to verify. Because the secret value 

itself is not sent, an opponent cannot modify an intercepted message and cannot generate a false 

message. 

(d) Confidentiality can be added to the approach of method (c) by encrypting the entire message 

plus the hash code. 

Digital Signatures 

Another important application, which is similar to the message authentication application, is the 

digital signature. 

The operation of the digital signature is similar to that of the MAC. In the case of the digital 

signature, the hash value of a message is encrypted with a user’s private key. Anyone who knows 

the user’s public key can verify the integrity of the message that is associated with the digital 

signature. 

Figure 11.3 illustrates, in a simplified fashion, how a hash code is used to provide a digital 

signature. 

 

 

 

 

 

 



REQUIREMENTS& SECURITY FOR A HASH FUNCTION: 

The purpose of a hash function is to produce a “fingerprint” of a file, message or other block of 

data. To be useful for message authentication, a hash function H must have the following 

properties: 

H can be applied to a block of data of any size 

H produces a fixed length output. 

H(x) is relatively easy to compute for any given x, making both hardware and software 

implementations practical. 

One-way property: - for any given value h, it is computationally infeasible to find x such that 

H(x)=h. this sometimes referred to in the literature as the one way property. 

Weak collision resistance:- for any given block x. it is computationally infeasible to find y≠x with 

H(y)=H(x). this is referred as weak collision resistance. 

Strong collision resistance:- it is computationally infeasible to find any pair (X,Y) such that 

H(x)=H(y). this is referred as strong collision resistance. 

 

 

 

 

 

A hash function that satisfies the first five properties in Table 11.1 is referred to as a weak hash 

function. If the sixth property, collision resistant, is also satisfied, then it is referred to as a strong 

hash function. 

As with encryption algorithms, there are two categories of attacks on hash functions: brute-force 

attacks and cryptanalysis 

Brute-Force Attacks 

A brute-force attack does not depend on the specific algorithm but depends only on bit length. In 

the case of a hash function, a brute-force attack depends only on the bit length of the hash value. 

A cryptanalysis, in contrast, is an attack based on weaknesses in a particular cryptographic 

algorithm. 



Cryptanalysis 

As with encryption algorithms, cryptanalytic attacks on hash functions seek to exploit some 

property of the algorithm to perform some attack other than an exhaustive search. The way to 

measure the resistance of a hash algorithm to cryptanalysis is to compare its strength to the effort 

required for a brute-force attack. 

That is, an ideal hash algorithm will require a cryptanalytic effort greater than or equal to the 

brute-force effort. 

 

 

SHA(Secure Hash Algorithm): 

In recent years, the most widely used hash function has been the Secure Hash Algorithm (SHA). 

Introduction: 

The Secure Hash Algorithm is a family of cryptographic hash functions developed by the NIST 

(National Institute of Standards & Technology). 

SHA is based on the MD4 algorithm and its design closely models MD5. 

SHA-1 is specified in RFC 3174. 

Purpose: Authentication, not encryption. 

SHA-1 produces a hash value of 160 bits. In 2002, NIST produced a revised version of the 

standard, FIPS 180-2, that defined three new versions of SHA, with hash value lengths of 256, 

384, and 512 bits, known as SHA-256, SHA-384, and SHA-512, respectively. 

SHA-1 logic: 

The algorithm takes a message with maximum of length of less than 264 bits. 

Produce output is 160 bits message digest. 

The input is processed 512 bits block. 

Processed Steps: 

Algorithm processing Steps: 

Step1: Append Padding Bits 

Step 2: Append Length 

Step 3: Initialize MD Buffer 

Step 4: Process Message in 512 bit (16-Word) Blocks 

Step 5: Output 

http://en.wikipedia.org/wiki/Cryptographic_hash_function


 

 

 

 

SHA-512 Logic  

The algorithm takes as input a message with a maximum length of less than 2128 bits and 

produces as output a 512-bit message digest. The input is processed in 1024-bit blocks.  

This follows the general structure depicted in Figure 11.8. The processing consists of the 

following steps.  

 

Step 1 Append padding bits.  

The message is padded so that its length is congruent to 896 modulo 1024 [length K 

896(mod 1024)]. Padding is always added, even if the message is already of the desired length. 

Thus, the number of padding bits is in the range of 1 to 1024. The padding consists of a single 1 

bit followed by the necessary number of 0 bits.  

Step 2 Append lengths.  

A block of 128 bits is appended to the message. This block is treated as an unsigned 128-bit 

integer (most significant byte first) and contains the length of the original message (before the 



padding). 

The outcome of the first two steps yields a message that is an integer multiple of 1024 bits 

in length. In Figure 11.9, the expanded message is represented as the sequence of 1024-bit blocks 

M1, M2, c, MN, so that the total length of the expanded message is N * 1024bits.  

Step 3 Initialize hash buffer.  

A 512-bit buffer is used to hold intermediate and final results of the hash function. The 

buffer can be represented as eight 64-bit registers (a, b, c, d, e, f, g, h). These registers are 

initialized to the following 64-bit integers (hexadecimal values): 

 a = 6A09E667F3BCC908    e = 510E527FADE682D1  

b = BB67AE8584CAA73B   f = 9B05688C2B3E6C1F  

c = 3C6EF372FE94F82B   g = 1F83D9ABFB41BD6B  

d = A54FF53A5F1D36F1   h = 5BE0CD19137E2179  

 

These values are stored in big-endian format, which is the most significant byte of a word in 

the low-address (leftmost) byte position. These words were obtained by taking the first sixty-four 

bits of the fractional parts of the square roots of the first eight prime numbers.  

Step 4 Process message in 1024-bit (128-word) blocks.  

The heart of the algorithm is a module that consists of 80 rounds; this module is labeled F.  

 

 

 

 



 

Each round takes as input the 512-bit buffer value, abcdefgh, and updates the contents of the buffer. 

At input to the first round, the buffer has the value of the intermediate hash value, Hi-1. Each round t 

makes use of a 64-bit value Wt, derived from the current 1024-bit block being processed (Mi ). 

These values are derived using a message schedule described subsequently. Each round also makes 

use of an additive constant Kt, where 0 … t … 79 indicates one of the 80 rounds. These words 

represent the first 64 bits of the fractional parts of the cube roots of the first 80 prime numbers. The 

constants provide a “randomized” set of 64-bit patterns, which should eliminate any regularities in 

the input data. Table 11.4 shows these constants in hexadecimal format (from left to right).  

The output of the eightieth round is added to the input to the first round (Hi-1) to produce Hi. The 

addition is done independently for each of the eight words in the buffer with each of the 

corresponding words in Hi-1, using addition modulo 264. Step 5 Output. After all N 1024-bit blocks 

have been processed, the output from the Nth stage is the 512-bit message digest 

 

 

 



 
  

 

MESSAGE AUTHENTICATION 

Message authentication is a mechanism or service used to verify the integrity of a message. 

Message authentication assures that data received are exactly as sent by (i.e., contain no 

modification, insertion, deletion, or replay) and that the purported identity of the sender is valid. 

 

MESSAGE AUTHENTICATION REQUIREMENTS 

In the context of communications across a network, the following attacks can be identified 

1. Disclosure: Release of message contents to any person or process not possessing the 

appropriate cryptographic key. 

2. Traffic analysis: Discovery of the pattern of traffic between parties. In a connection oriented 

application, the frequency and duration of connections could be determined. 

3. Masquerade: Insertion of messages into the network from a fraudulent source. 

4. Content modification: Changes to the contents of a message, including insertion, deletion, 

transposition, and modification. 



5. Sequence modification: Any modification to a sequence of messages between parties, including 

insertion, deletion, and reordering. 

6. Timing modification: Delay or replay of messages. In a connection-oriented application, an 

entire session or sequence of messages could be a replay of some previous valid session, or 

individual messages in the sequence could be delayed or replayed. 

7. Source repudiation: Denial of transmission of message by source. 

8. Destination repudiation: Denial of receipt of message by destination. 

 

MESSAGE AUTHENTICATION FUNCTIONS 

Any message authentication or digital signature mechanism has two levels of functionality. At the 

lower level, there must be some sort of function that produces an authenticator: a value to be used 

to authenticate a message. This lower-level function is then used as a primitive in a higher-level 

authentication protocol that enables a receiver to verify the authenticity of a message. there are 3 

types of functions that may be used to produce an authenticator. 

 

• Hash function: A function that maps a message of any length into a fixed length hash value, 

which serves as the authenticator 

• Message encryption: The cipher text of the entire message serves as its authenticator 

• Message authentication code (MAC): A function of the message and a secret key that produces 

a fixed-length value that serves as the authenticator 

 

Message Encryption 

Message encryption by itself can provide a measure of authentication. The analysis differs for 

symmetric and public-key encryption schemes. 

MESSAGE AUTHENTICATION CODE (MAC) 

This authentication technique involves the use of a secret key to generate a small fixed-size block 

of data, known as a cryptographic checksum or MAC, that is appended to the message. This 



technique assumes that two communicating parties, say A and B, share a common secret 

key 

When A has a message to send to B, it calculates the MAC as a function of the message and the 

key 

 

The message plus MAC are transmitted to the intended recipient. The recipient performs the same 

calculation on the received message, using the same secret key, to generate a new MAC. The 

received MAC is compared to the calculated MAC (Figure 12.4a). If we assume that only the 

receiver and the sender know the identity of the secret key, and if the received MAC matches the 

calculated MAC, then 

1. The receiver is assured that the message has not been altered. If an attacker alters the message 

but does not alter the MAC, then the receiver’s calculation of the MAC will differ from the 

received MAC. 

2. The receiver is assured that the message is from the alleged sender. Because no one else knows 

the secret key. 

 

 

SECURITY OF MACS: 

Just as with symmetric and public-key encryption, we can group attacks on hash functions and 

MACs into two categories: brute-force attacks and cryptanalysis. 

 

brute-force attacks 

A brute-force attack on a MAC is a more difficult undertaking than a brute-force attack on a hash 

function because it requires known message-tag pairs. The strength of a hash function against 

brute-force attacks depends solely on the length of the hash code produced by the algorithm, with 

cost (2m/2). A brute-force attack on a MAC has cost related to min(2k, 2n), similar to symmetric 

encryption algorithms. It would appear reasonable to require that the key length and MAC length 

satisfy a relationship such as min(k, n) >= N, where N is perhaps in the range of 128 bits. 

cryptanalysis. 

As with encryption algorithms, cryptanalytic attacks on hash functions and MAC algorithms seek 

to exploit some property of the algorithm to perform some attack other than an exhaustive search. 

The way to measure the resistance of a hash or MAC algorithm to cryptanalysis is to compare its 

strength to the effort required for a brute force attack. That is, an ideal hash or MAC algorithm 

will require a cryptanalytic effort greater than or equal to the brute-force effort. 

 



HMAC: 

In recent years, there has been increased interest in developing a MAC derived from a 

cryptographic hash function, because they generally execute faster than symmetric block ciphers, 

and because code for cryptographic hash functions is widely available. 

A hash function such as SHA was not designed for use as a MAC and cannot be used directly for 

that purpose because it does not rely on a secret key. There have been a number of proposals for 

the incorporation of a secret key into an existing hash algorithm, originally by just pre-pending a 

key to the message. Problems were found with these earlier, simpler proposals, but they resulted 

in the development of HMAC. 

HMAC Design Objectives: 

• To use, without modifications, available hash functions. In particular, to use hash functions that 

perform well in software and for which code is freely and widely available. 

• To allow for easy replaceability of the embedded hash function in case faster or more secure 

hash functions are found or required. 

• To preserve the original performance of the hash function without incurring a significant 

degradation. 

• To use and handle keys in a simple way. 

• To have a well understood cryptographic analysis of the strength of the authentication 

mechanism based on reasonable assumptions about the embedded hash function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



HMAC Algorithm: 

 

 

 
 

 

Cipher-Based Message Authentication Code (CMAC) 

 

 

 

 

 

  



 
 

 

 

 

 

 

 

 

 

 

 



DIGITAL SIGNATURES 

A digital signature is an authentication mechanism that enables the creator of a message to attach 

a code that acts as a signature. Typically the signature is formed by taking the hash of the message 

and encrypting the message with the creator’s private key. The signature guarantees the source 

and integrity of the message. 

The digital signature standard (DSS) is an NIST standard that uses the secure hash algorithm 

(SHA). 

 

Properties 

Message authentication protects two parties who exchange messages from any third party. 

However, it does not protect the two parties against each other. Several forms of dispute between 

the two are possible. 

 

 

DIGITAL SIGNATURE STANDARD 

The Digital Signature Standard (DSS) makes use of the Secure Hash Algorithm (SHA) described 

and presents a new digital signature technique, the Digital Signature 

Algorithm (DSA). 

This latest version incorporates digital signature algorithms based on RSA and on elliptic curve 

cryptography. In this section, we discuss the original DSS algorithm. The DSS uses an algorithm 

that is designed to provide only the digital signature function.Unlike RSA, it cannot be used for 

encryption or key exchange. Nevertheless, it is a public-key technique. 



 

 

In the RSA approach, the message to be signed is input to a hash function that produces a secure 

hash code of fixed length. This hash code is then encrypted using the sender's private key to form 

the signature. Both the message and the signature are then transmitted. The recipient takes the 

message and produces a hash code. 

The recipient also decrypts the signature using the sender's public key. If the calculated hash code 

matches the decrypted signature, the signature is accepted as valid. Because only the sender 

knows the private key, only the sender could have produced a valid signature. 

Digital Signature Algorithm 

The DSA is based on the difficulty of computing discrete logarithms and is based on schemes 

originally presented by Elgamal and Schnorr. The DSA signature scheme has advantages, being 

both smaller (320 vs 1024bit) and faster over RSA. Unlike RSA, it cannot be used for encryption 

or key exchange. Nevertheless, it is a public-key technique 

DSA typically uses a common set of global parameters (p,q,g) for a community of clients, as 

shown. A 160-bit prime number q is chosen. Next, a prime number p is selected with a length 

between 512 and 1024 bits such that q divides (p – 1). Finally, g is chosen to be of the form h(p–1)/q 

mod p where h is an integer between 1 and (p – 1) with the restriction that g must be greater than 

1. Thus, the global public key components of DSA have the same for as in the Schnorr signature 

scheme. 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 

 
 

 

 

Signing and Verifying 

The structure of the algorithm, as revealed here is quite interesting. Note that the test at the end is on the 

value r, which does not depend on the message at all. Instead, r is a function of k and the three global 

public-key components. The multiplicative inverse of k (mod q) is passed to a function that also has as 

inputs the message hash code and the user's private key. The structure of this function is such that the 

receiver can recover r using the incoming message and signature, the public key of the user, and the 

global public key. 

 

 

 

 

 

 

 



 

 

  
 

 

 

KEY MANAGEMENT AND DISTRIBUTION 

 
 



 

 

 

Key management and Distribution Symmetric Key Distribution Using 

Symmetric Encryption 

For symmetric encryption to work, the two parties to an exchange must share the same key, 

and that key must be protected from access by others. Therefore, the term that refers to the means of 

delivering a key to two parties who wish to exchange data, without allowing others to see the key. 

For two parties A and B, key distribution can be achieved in a number of ways, as follows: 

 

1. A can select a key and physically deliver it to B. 

2. A third party can select the key and physically deliver it to A and B. 

3. If A and B have previously and recently used a key, one party can transmit the new key to 

the other, encrypted using the old key. 

4. If A and B each has an encrypted connection to a third party C, C can deliver a key on the 

encrypted links to A and B. 

 

Physical delivery (1 & 2) is simplest - but only applicable when there is personal contact 

between recipient and key issuer. This is fine for link encryption where devices & keys occur in 

pairs, but does not scale as number of parties who wish to communicate grows. 3 is mostly based on 

1 or 2 occurring first. 

 



 

 

A third party, whom all parties trust, can be used as a trusted intermediary to mediate the 

establishment of secure communications between them (4). Must trust intermediary not to abuse the 

knowledge of all session keys. As number of parties grow, some variant of 4 is only practical 

solution to the huge growth in number of keys potentially needed. 

Key distribution centre: 

 

 The use of a key distribution center is based on the use of a hierarchy of keys. At a 

minimum, two levels of keys are used. 

 Communication between end systems is encrypted using a temporary key, often referred to as a 

Session key. 

 Typically, the session key is used for the duration of a logical connection and then 

discarded 

 Master key is shared by the key distribution center and an end system or user and used to encrypt 

the session key. 

 

Key Distribution Scenario: 

 

 

 

Let us assume that user A wishes to establish a logical connection with B and requires a one-



 

 

time session key to protect the data transmitted over the connection. A has a master key, Ka, known 

only to itself and the KDC; similarly, B shares the master key Kb with the KDC. The following steps 

occur: 

1 A issues a request to the KDC for a session key to protect a logical connection to B. The message 

includes the identity of A and B and a unique identifier, N1, for this transaction, which we refer 

to as a nonce. The nonce may be a timestamp, a counter, or a random number; the minimum 

requirement is that it differs with each request. Also, to prevent masquerade, it should be 

difficult for an opponent to guess the nonce. Thus, a random number is a good choice for a 

nonce. 

 

2. The KDC responds with a message encrypted using Ka Thus, A is the only one who can 

successfully read the message, and A knows that it originated at the KDC. The message includes 

two items intended for A: 

 

 The one-time session key, Ks, to be used for the session 

 The original request message, including the nonce, to enable A to match this 

response with the appropriate request 

 

Thus, A can verify that its original request was not altered before reception by the KDC and, 

because of the nonce, that this is not a replay of some previous request. In addition, 

the message includes two items intended for B: 

 

 The one-time session key, Ks to be used for the session 

 An identifier of A (e.g., its network address), IDA 

 

These last two items are encrypted with Kb (the master key that the KDC shares with B). They 

are to be sent to B to establish the connection and prove A's identity. 

3. A stores the session key for use in the upcoming session and forwards to B the information that 

originated at the KDC for B, namely, E(Kb, [Ks || IDA]). Because this information is encrypted 

with Kb, it is protected from eavesdropping. B now knows the session key (Ks), knows that the 

other party is A (from IDA), and knows that the information   originated   at   the    KDC    

(because    it    is    encrypted    using    Kb). At this point, a session key has been securely 

delivered to A and B, and they may begin 



 

 

their protected exchange. However, two additional steps are desirable: 

 

4. Using the newly minted session key for encryption, B sends a nonce, N2, to A. 
 

5. Also using Ks, A responds with f(N2), where f is a function that performs some transformation 

on N2 (e.g., adding one). 

 

These steps assure B that the original message it received (step 3) was not a replay. 

 

Note that the actual key distribution involves only steps 1 through 3 but that steps 4 and 5, as well as 

3, perform an authentication function. 

 

Major Issues with KDC: 

 

Hierarchical Key Control 

 It is not necessary to limit the key distribution function to a single KDC.Indeed,for very large 

networks,it may not be practical to do so.As an alternative,a hierarchy of KDCs can be 

established. 

 For example, there can be local KDCs, each responsible for a small domain of the overall 

internetwork, such as a single LAN or a single building. 

 If two entities in different domains desire a shared key, then the corresponding local KDCs 

can communicate through a global KDC. 

  

 The hierarchical concept can be extended to three or even more layers, depending on the size of 

the user population and the geographic scope of the internetwork. 

 A hierarchical scheme minimizes the effort involved in master key distribution, because most 



 

 

master keys are those shared by a local KDC with its local entities. 

 

 

Session Key Lifetime 

 The distribution of session keys delays the start of any exchange and places a burden on network 

capacity. A security manager must try to balance these competing considerations in determining 

the lifetime of a particular session key. 

 For connection-oriented protocols, one obvious choice is to use the same session key for the 

length of time that the connection is open, using a new session key for each new session. 

  If a logical connection has a very long lifetime, then it would be prudent to change the session 

key periodically, perhaps every time the PDU (protocol data unit) sequence number cycles. 

 For a connectionless protocol, such as a transaction-oriented protocol, there is no explicit 

connection initiation or termination. 

 Thus, it is not obvious how often one needs to change the session key. The most secure 

approach is to use a new session key for each exchange. 

 A better strategy is to use a given session key for a certain fixed period only or for a certain 

number of transactions. 

 

 

A Transparent Key Control Scheme 

 

 The approach suggested in Figure 14.3is useful for providing end-to-end encryption at a network 

or transport level in a way that is transparent to the end users. 

  The approach assumes that communication makes use of a connection-oriented end-to- end 

protocol, such as TCP. 

 The noteworthy element of this approach is a session security module (SSM), which may consist 

of functionality at one protocol layer,that performs end-to-end encryption and obtains session 

keys on behalf of its host or terminal. 

 

The steps involved in establishing a connection are shown in Figure  

1.  When one host wishes to set up a connection to another host, it transmits a 

connection-request packet. 

2. The SSM saves that packet and applies to the KDC for permission to establish the 

connection. 



 

 

3.  The communication between the SSM and the KDC is encrypted using a master 

key shared only by this SSM and the KDC.If the KDC approves the 

connection request,it generates the session key and delivers it to the two 

appropriate SSMs,using a unique permanent key for each SSM. 

4. The requesting SSM can now release the connection request packet, and a 

connection is set up between the two end systems. 

5. All user data exchanged between the two end systems are encrypted by their 

respective SSMs using the onetime session key. 

 

 

 The automated key distribution approach provides the flexibility and dynamic characteristics 

needed to allow a number of terminal users to access a number of hosts and for the hosts to 

exchange data with each other. 

 

Decentralized Key Control 

 

 The use of a key distribution center imposes the requirement that the KDC be trusted and be 

protected from subversion. This requirement can be avoided if key distribution is fully 

decentralized. 



 

 

 Although full decentralization is not practical for larger networks using symmetric 

encryption only, it may be useful within a local context. 

 A decentralized approach requires that each end system be able to communicate in a secure 

manner with all potential partner end systems for purposes of session key distribution. 

  Thus, there may need to be as many as   (𝑛   − 1)/2master keys for a configuration with 𝑛 

end systems. 

 A session key may be established with the following sequence of steps (Figure 14.5). 

1. A issues a request to B for a session key and includes a nonce, . 

2. B responds with a message that is encrypted using the shared master key. The response 

includes the session key selected by B,an identifier of B,the value f(N1), and another nonce 

N2. 

3. Using the new session key,A returns f(N2) to B. 

 

 

 

Controlling Key Usage 

 

The concept of a key hierarchy and the use of automated key distribution techniques greatly 

reduce the number of keys that must be manually managed and distributed. It also may be desirable 

to impose some control on the way in which automatically distributed keys are used. For example, in 

addition to separating master keys from session keys, we may wish to define different types of 

session keys on the basis of use, such as 

 Data-encrypting key, for general communication across a network 

 PIN-encrypting key, for personal identification numbers (PINs) used in 

electronic funds transfer and point-of-sale applications 

 File-encrypting key, for encrypting files stored in publicly accessible locations 



 

 

 

To illustrate the value of separating keys by type, consider the risk that a master key is 

imported as a data-encrypting key into a device. Normally, the master key is physically secured 

within the cryptographic hardware of the key distribution center and of the end systems. Session 

keys encrypted with this master key are available to application programs, as are the data encrypted 

with such session keys. 

However, if a master key is treated as a session key, it may be possible for an unauthorized 

application to obtain plaintext of session keys encrypted with that master key. 

The proposed technique is for use with DES and makes use of the extra 8 bits in each 64-bit 

DES key. That is, the eight non-key bits ordinarily reserved for parity checking form the key tag. 

The bits have the following interpretation: 

• One bit indicates whether the key is a session key or a master key. 

• One bit indicates whether the key can be used for encryption. 

• One bit indicates whether the key can be used for decryption. 

• The remaining bits are spares for future use. 

 

 

Because the tag is embedded in the key, it is encrypted along with the key when that key is 

distributed, thus providing protection. The drawbacks of this scheme are 

1. The tag length is limited to 8 bits, limiting its flexibility and functionality. 

2. Because the tag is not transmitted in clear form, it can be used only at the point 

of decryption, limiting the ways in which key use can be controlled. 

 

A more flexible scheme, referred to as the control vector, is described here. In this 

scheme, each session key has an associated control vector consisting of a number of fields 

that specify the uses and restrictions for that session key. The length of the control vector may 

vary. 

 

The control vector is cryptographically coupled with the key at the time of key 

generation at the KDC. 

 

As a first step, the control vector is passed through a hash function that produces a value 

whose length is equal to the encryption key length. In essence, a hash function maps values from a 

larger range into a smaller range with a reasonably uniform spread. Thus, for example, if numbers 



 

 

in the range 1 to 100 are hashed into numbers in the range 1 to 10, approximately 10% of the 

source values should map into each of the target values. The hash value is then XORed with the 

master key to produce an output that 

is used as the key input for encrypting the session key. Thus, 

 

 

Hash value = H = h(CV) Key 

input = Km ⊕H 

Ciphertext = E([Km ⊕H], Ks) 

 

where is the master key and is the session key. The session key is recovered in plaintext by 

the reverse operation: 

D([Km⊕H], E([Km ⊕H], Ks)) 

 

 
 

 

 

 

When a session key is delivered to a user from the KDC, it is accompanied by the 



 

 

control vector in clear form. The session key can be recovered only by using both the 

master key that the user shares with the KDC and the control vector. Thus, the linkage 

between the session key and its control vector is maintained. 

 

Use of the control vector has two advantages over use of an 8-bit tag. First, there is 

no restriction on length of the control vector, which enables arbitrarily complex controls to 

be imposed on key use. Second, the control vector is available in clear form at all stages of 

operation. Thus, control of key use can be exercised in multiple locations. 

SYMMETRIC KEY DISTRIBUTION USING 

ASYMMETRIC ENCRYPTION 

 

 Once public keys have been distributed or have become accessible, secure 

communication that thwarts eavesdropping, tampering, or both, is possible. 

 Public-key encryption provides for the distribution of secret keys to be used for 

conventional encryption. 

 

Simple Secret Key Distribution 

 

 A generates a public/private key pair {PUa, PRa} and transmits a message to B 

consisting of PUa and an identifier of A, IDA 

 B generates a secret key, Ks, and transmits it to A, encrypted with A's public key. 

 A computes D(PRa, E(PUa, Ks)) to recover the secret key. Because only A can 

decrypt the message, only A and B will know the identity of Ks. 

 A discards PUa and PRa and B discards PUa. 

 

 

 

Here third party can intercept messages and then either relay the intercepted message or 

substitute another message Such an attack is known as a man-in-the-middle attack. 



 

 

Secret Key Distribution with Confidentiality and Authentication: 

 

 

 

 A uses B's public key to encrypt a message to B containing an identifier of A (IDA) and a nonce 

(N1), which is used to identify this transaction uniquely 

 B sends a message to A encrypted with PUa and containing A's nonce (N1) as well as a new 

nonce generated by B (N2) Because only B could have decrypted message (1), the presence of 

N1 in message (2) assures A that the correspondent is B 

 A returns N2 encrypted using B's public key, to assure B that its correspondent is A. 

 A selects a secret key Ks and sends M = E(PUb, E(PRa, Ks)) to B. Encryption of this message 

with B's public key ensures that only B can read it; encryption with A's private key ensures that 

only A could have sent it. 

 B computes D(PUa, D(PRb, M)) to recover the secret key. 

 

A Hybrid Scheme: 

 

Yet another way to use public-key encryption to distribute secret keys is a hybrid approach. 

 

 This scheme retains the use of a key distribution center (KDC) that shares a secret master 

key with each user and distributes secret session keys encrypted with the master key. 

 A public key scheme is used to distribute the master keys. 

 The addition of a public-key layer provides a secure, efficient means of distributing master 

keys. 



 

 

Distribution of Public Keys: 

 

Several techniques have been proposed for the distribution of public keys, which can mostly 

be grouped into the categories shown. 

 

 Public announcement 

 Publicly available directory 

 Public-key authority 

 Public-key certificates 

 

Public Announcement of Public Keys 

 

The point of public-key encryption is that the public key is public, hence any 

participant can send his or her public key to any other participant, or broadcast the key to the 

community at large.   eg. append PGP keys to email messages or post to news groups or email 

list 

 
 

Its major weakness is forgery, anyone could pretend to be user A and send a public key 

to another participant or broadcast such a public key.   Until the forgery is discovered they can 

masquerade as the claimed user. 

Publicly Available Directory 

 

 can obtain greater security by registering keys with a public directory 

 directory must be trusted with properties: 

 

 The authority maintains a directory with a {name, public key} entry for each 

participant. 

 Each participant registers a public key with the directory authority. 



 

 

 A participant may replace the existing key with a new one at any time because the 

corresponding private key has been compromised in some way. 

 Participants could also access the directory electronically. For this purpose, secure, 

authenticated communication from the authority to the participant is mandatory. 

 

This scheme is clearly more secure than individual public announcements but still has 

vulnerabilities. 

If an adversary succeeds in obtaining or computing the private key of the directory 

authority, the adversary could authoritatively pass out counterfeit public keys and 

subsequently impersonate any participant and eavesdrop on messages sent to any participant. 

Another way to achieve the same end is for the adversary to tamper with the records kept by 

the authority. 

 

Public-Key Authority: 

 

 Stronger security for public-key distribution can be achieved by providing tighter control 

over the distribution of public keys from the directory. 

 It requires users to know the public key for the directory, and that they interact with 

directory in real-time to obtain any desired public key securely. 

 Totally seven messages are required. 

 



 

 

 

1. A sends a timestamped message to the public-key authority containing a request for the 

current public key of B. 

 
2. The authority responds with a message that is encrypted using the authority's private key, 

PRauth Thus, A is able to decrypt the message using the authority's public key. Therefore, 

A is assured that the message originated with the authority. The message includes the 

following: 

 

 B's public key, PUb which A can use to encrypt messages destined for B 

 

 The original request, to enable A to match this response with the corresponding 

earlier request and to verify that the original request was not altered before 

reception by the authority. 

 The original timestamp, so A can determine that this is not an old message from 

the authority containing a key other than B's current public key. 

 
3. A stores B's public key and also uses it to encrypt a message to B containing an 

identifier of A (IDA) and a nonce (N1), which is used to identify this transaction 

uniquely. 

 

4. B retrieves A's public key from the authority in the same manner as A retrieved B's 

public key. 



 

 

5. At this point, public keys have been securely delivered to A and B, and they may 

begin their protected exchange. However, two additional steps are desirable: 

 

6. B sends a message to A encrypted with PUa and containing A's nonce (N1) as well 

as a new nonce generated by B (N2) Because only B could have decrypted message 

(3), the presence of N1 in message (6) assures A that the correspondent is B. 

 
7. A returns N2, encrypted using B's public key, to assure B that its correspondent is A. 

Public-Key Certificates 

 

 A user must appeal to the authority for a public key for every other user that it wishes to 

contact and it is vulnerable to tampering too. 

 Public key certificates can be used to exchange keys without contacting a public-key 

authority. 

 A certificate binds an identity to public key, with all contents signed by a trusted Public- 

Key or Certificate Authority (CA). 

 This can be verified by anyone who knows the public-key authorities public-key. 

 

A participant can also convey its key information to another by transmitting its 

certificate. 

 

Other participants can verify that the certificate was created by the authority. We can 

place the following requirements on this scheme: 

 

1. Any participant can read a certificate to determine the name and public key of the 

certificate's owner. 

2. Any participant can verify that the certificate originated from the certificate authority 

and is not counterfeit. 

3. Only the certificate authority can create and update certificates. 

 

4. Any participant can verify the currency of the certificate. 

 

One scheme has become universally accepted for formatting public-key certificates: 

the X.509 standard. 

 

X.509 certificates are used in most network security applications, including IP 

security, secure sockets layer (SSL), secure electronic transactions (SET), and S/MIME. 

 



 

 

 
 

 

 X.509 CERTIFICATES 

X.509 is part of the X.500 series of recommendations that define a directory service, 

being a server or distributed set of servers that maintains a database of information about 

users. 

X.509 defines a framework for the provision of authentication services by the X.500 

directory to its users. The directory may serve as a repository of public-key certificates. Each 

certificate contains the public key of a user and is signed with the private key of a trusted 

certification authority. In addition, X.509 defines alternative authentication protocols based on 

the use of public-key certificates. X.509 is based on the use of public-key cryptography and 

digital signatures.  

The X.509 certificate format is widely used, in for example S/MIME, IP Security and 

SSL/TLS and SET. X.509 was initially issued in 1988. The standard was subsequently revised 



 

 

to address some of the security concerns; a revised recommendation was issued in 1993. A 

third version was issued in 1995 and revised in 2000. 

Certificates 

 

The heart of the X.509 scheme is the public-key certificate associated with each user. 

These user certificates are assumed to be created by some trusted certification authority (CA) 

and placed in the directory by the CA or by the user. The directory server itself is not 

responsible for the creation of public keys or for the certification function; it merely provides 

an easily accessible location for users to obtain certificates. 

The standard uses the notation for a certificate of: 

 

CA<<A>> where the CA signs the certificate for user A with its private key. In more 

detail CA<<A>> = CA {V, SN, AI, CA, UCA, A, UA, Ap, TA}. 

 

If the corresponding public key is known to a user, then that user can verify that a 

certificate signed by the CA is valid. 

 Version: Differentiates among successive versions of the certificate format; the default is 

version 1. If the issuer unique identifier or subject unique identifier are present, the value 



 

 

must be version 2. If one or more extensions are present, the version must be version 3. 

 Serial number: An integer value unique within the issuing CA that is unambiguously 

associated with this certificate. 

 Signature algorithm identifier: The algorithm used to sign the certificate together with 

any associated parameters. Because this information is repeated in the signature field at 

the end of the certificate, this field has little, if any, utility. 

 Issuer name: X.500 is the name of the CA that created and signed this certificate. 

 Period of validity: Consists of two dates: the first and last on which the certificate is 

valid. 

 Subject name: The name of the user to whom this certificate refers. That is, this 

certificate certifies the public key of the subject who holds the corresponding private key. 

 Subject’s public-key information: The public key of the subject, plus an identifier of 

the algorithm for which this key is to be used, together with any associated parameters. 

 Issuer unique identifier: An optional-bit string field used to identify uniquely the 

issuing CA in the event the X.500 name has been reused for different entities. 

 Subject unique identifier: An optional-bit string field used to identify uniquely the subject in the event the X.500 name has been reused for different entities. 

 Extensions: A set of one or more extension fields. Extensions were added in version 3 

and are discussed later in this section. 

 Signature: Covers all of the other fields of the certificate; it contains the hash code of the 

other fields encrypted with the CA’s private key. This field includes the signature 

algorithm identifier. 

 

The unique identifier fields were added in version 2 to handle the possible reuse of 

subject and/or issuer names over time. These fields are rarely used. The standard uses the 

following notation to define a certificate: 

CA<<A>> = CA {V, SN, AI, CA, UCA, A, UA, Ap, TA} 

where 

Y<< X >>  = the certificate of user X issued by certification authority Y 

Y {I} = the signing of I by Y. It consists of I with an encrypted 

hash 

code appended 

V = version of the certificate 

SN = serial number of the certificate 

AI = identifier of the algorithm used to sign the 

certificate CA = name of certificate authority 

UCA = optional unique identifier of the 



 

 

CA A = name of user A 

UA = optional unique identifier of the user 

A Ap = public key of user A 

TA = period of validity of the certificate 

 

Obtaining a Certificate 

User certificates generated by a CA have the following characteristics: 

• Any user with access to the public key of the CA can verify the user public key 

that was certified. 

• No party other than the certification authority can modify the certificate with 

out this being detected. 

Because certificates are unforgeable, they can be placed in a directory without the need 

for the directory to make special efforts to protect them. 

If all users subscribe to the same CA, then there is a common trust of that CA. All 

user certificates can be placed in the directory for access by all users. In addition, a user can 

transmit his or her certificate directly to other users. In either case, once B is in possession of 

A’s certificate, B has confidence that messages it encrypts with A’s public key will be secure 

from eavesdropping and that messages signed with A’s private key are unforgeable. 

CA Hierarchy: 

If both parties use the same CA, they know its public key and can verify others 

certificates. If there is a large community of users, it may not be practical for all users to 

subscribe to the same CA. Hence there has to be some means to form a chain of certifications 

between the CA's used by the two parties, by the use of client and parent certificates. All these 

certificates of CAs by CAs need to appear in the directory, and the user needs to know how 

they are linked to follow a path to another user's public-key certificate. X.509 suggests that 

CAs be arranged in a hierarchy so that navigation is straightforward. It is assumed that each 



 

 

client trusts its parent’s certificates.  

Figure 14.15 illustrates the use of an X.509 hierarchy to mutually verify clients 

certificates. The connected circles indicate the hierarchical relationship among the CAs; the 

associated boxes indicate certificates maintained in the directory for each CA entry. The 

directory entry for each CA includes two types of certificates: 

Forward certificates: Certificates of X generated by other CAs, 

Reverse certificates: Certificates generated by X that are the certificates of other CAs. In 

this example, we can track chains of certificates as follows: 

A acquires B certificate using chain 

X<<W>>W<<V>>V<<Y>>Y<<Z>>Z<<B>> 

B acquires A certificate using chain: 

Z<<Y>>Y<<V>>V<<W>>W<<X>>X<<A

>> 

 

Certificate Revocation: 

A certificate includes a period of validity. Typically a new certificate is issued just 

before the expiration of the old one. 

In addition, it may be desirable on occasion to revoke a certificate before it expires, for 

one of a range of following reasons: 

1. The user’s private key is assumed to be compromised. 

2. The user is no longer certified by this CA. Reasons for this include that the subject’s 

name has changed, the certificate is superseded, or the certificate was not issued in 

conformance with the CA’s policies. 



 

 

3. The CA’s certificate is assumed to be compromised. 

To support this, each CA must maintain a list consisting of all revoked but not expired 

certificates issued by that CA, known as the certificate revocation list (CRL). Each certificate 

revocation list (CRL) posted to the directory is signed by the issuer and includes (as shown in 

Figure 14.14b previously) the issuer's name, the date the list was created, the date the next 

CRL is scheduled to be issued, and an entry for each revoked certificate. Each entry consists 

of the serial number of a certificate and revocation date for that certificate. Because serial 

numbers are unique within a CA, the serial number is sufficient to identify the certificate. 

When a user receives a certificate in a message, the user must determine whether the 

certificate has been revoked, by checking the directory CRL each time a certificate is received, 

this often does not happen in practice. 

 

X.509 Version 3 

The X.509 version 2 format does not convey all of the information. Rather than 

continue to add fields to a fixed format, standards developers felt that a more flexible approach 

was needed. X.509 version 3 includes a number of optional extensions that may be added to 

the version 2 format. Each extension consists of an extension identifier, a criticality indicator, 

and an extension value. The criticality indicator indicates whether an extension can be safely 

ignored or not. 

 

Certificate Extensions 

The certificate extensions fall into three main categories: 

• Key and policy information - convey additional information about the subject and issuer 

keys, plus indicators of certificate policy. A certificate policy is a named set of rules that 

indicates the applicability of a certificate to a particular community and/or class of 

application with common security requirements. 

• Subject and issuer attributes - support alternative names, in alternative formats, for a 

certificate subject or certificate issuer and can convey additional information about the 

certificate subject; eg. postal address, email address, or picture image 

• Certification path constraints - allow constraint specifications to be included in 

certificates issued for CA’s by other CA’s that may restrict the types of certificates that 

can be issued by the subject CA or that may occur subsequently in a certification chain. 

PUBLIC-KEY Infrastructure 

RFC 4949 (Internet Security Glossary) defines public-key infrastructure (PKI) as 

the set of hardware, software, people, policies, and procedures needed to create, 



 

 

manage, store, distribute, and revoke digital certificates based on asymmetric cryptography. The 

principal objective for developing a PKI is to enable secure, convenient, and efficient acquisition 

of public keys. The Internet Engineering Task Force (IETF) Public Key Infrastructure X.509 

(PKIX) working group has been the driving force behind setting up a formal (and generic) model 

based on X.509 that is suitable for deploying a certificate-based architecture on the Internet. 

Figure below shows the interrelationship among the key elements of the PKIX model. 

 

 

Fig: PKIX Architectural Model 

The Elements of PKIX Model are: 

 End entity: A generic term used to denote end users, devices (e.g., servers, routers), or any 

other entity that can be identified in the subject field of a public-key certificate. End 

entities typically consume and/or support PKI-related services. 

 Certification authority (CA): The issuer of certificates and (usually) certificate revocation 

lists (CRLs). It may also support a variety of administrative functions, although these are 

often delegated to one or more Registration Authorities. 

 Registration authority (RA): An optional component that can assume a number of 

administrative functions from the CA. The RA is often associated with the end entity 

registration process but can assist in a number of other areas as well. 

 CRL issuer: An optional component that a CA can delegate to publish CRLs. 

 Repository: A generic term used to denote any method for storing certificates and CRLs 

so that they can be retrieved by end entities. 

The PKIX Management Functions are: 

 Registration: This is the process whereby a user first makes itself known to a CA (directly 

or through an RA), prior to that CA issuing a certificate or certificates for that user. 

Registration begins the process of enrolling in a PKI. Registration usually involves some 

offline or online procedure for mutual authentication. Typically, the end entity is issued 

one or more shared secret keys used for subsequent authentication. 

 Initialization: Before a client system can operate securely, it is necessary to install key 



 

 

materials that have the appropriate relationship with keys stored elsewhere in the 

infrastructure. For example, the client needs to be securely initialized with the public key 

and other assured information of the trusted CA(s), to be used in validating certificate 

paths. 

 Certification: This is the process in which a CA issues a certificate for a user’s public key, 

returns that certificate to the user’s client system, and/or posts that certificate in a 

repository. 

 Key pair recovery: Key pairs can be used to support digital signature creation and 

verification, encryption and decryption, or both. When a key pair is used for 

encryption/decryption, it is important to provide a mechanism to recover the necessary 

decryption keys when normal access to the keying material is no longer possible, otherwise 

it will not be possible to recover the encrypted data. Loss of access to the decryption key 

can result from forgotten passwords/PINs, corrupted disk drives, damage to hardware 

tokens, and so on. Key pair recovery allows end entities to restore their 

encryption/decryption key pair from an authorized key backup facility (typically, the CA 

that issued the end entity’s certificate). 

 Key pair update: All key pairs need to be updated regularly (i.e., replaced with a new key 

pair) and new certificates issued. Update is required when the certificate lifetime expires 

and as a result of certificate revocation. 

 Revocation request: An authorized person advises a CA of an abnormal situation 

requiring certificate revocation. Reasons for revocation include private key compromise, 

change in affiliation, and name change. 

 Cross certification: Two CAs exchange information used in establishing a cross-certificate. 

A cross- certificate is a certificate issued by one CA to another CA that contains a CA 

signature key used for issuing certificates. 

 

 

KERBEROS 

 

Kerberos provides a centralized authentication server whose function is to authenticate 

users to servers and servers to users. Kerberos relies exclusively on conventional encryption, 

making no use of public-key encryption. 

 

Motivation 

 

A distributed architecture consists of dedicated user workstations (clients) and 

distributed or centralized servers. In this environment, there are three approaches to security: 

 Rely on each individual client workstation to assure the identity of its user or users 

and rely on each server to enforce a security policy based on user identification (ID). 

 Require that client systems authenticate themselves to servers, but trust the 

client system concerning the identity of its user. 

  Require the user to prove his or her identity for each service invoked. Also require 

that servers prove their identity to clients. 

 

The following are the requirements for Kerberos: 

 

 Secure: A network eavesdropper should not be able to obtain the necessary 

information to impersonate a user. More generally, Kerberos should be strong 

enough that a potential opponent does not find it to be the weak link. 

 Reliable: For all services that rely on Kerberos for access control, lack of 



 

 

availability of the Kerberos service means lack of availability of the supported 

services. Hence, Kerberos should be highly reliable and should employ distributed 

server architecture, with one system able to back up another. 

 Transparent: Ideally, the user should not be aware that authentication is taking 

place, beyond the requirement to enter a password. 

 Scalable: The system should be capable of supporting large numbers of clients and 

servers. This suggests a modular, distributed architecture. 

 

To support these requirements, the overall scheme of Kerberos is that of a trusted third- 

party authentication service that uses a protocol based on Needham and Schroeder.It is trusted in 

the sense that clients and servers trust Kerberos to mediate their mutual authentication. Assuming 

the Kerberos protocol is well designed, and then the authentication service is secure if the 

Kerberos server itself is secure. 

Two versions of Kerberos are in common use. Version 4 and Version 

5 Kerberos Version 4 

Version 4 of Kerberos makes use of DES, in a rather elaborate protocol, to provide the 

authentication service 

 

1.A Simple Authentication Dialogue 

 

In an unprotected network environment, any client can apply to any server for service. 

The obvious security risk is that of impersonation. To counter this threat, servers must be able 

to confirm the identities of clients who request service. But in an open environment, this 

places a substantial burden on each server. 

An alternative is to use an authentication server (AS) that knows the passwords of all 

users and stores these in a centralized database. In addition, the AS shares a unique secret key 

with each server. The simple authentication dialogue is as follows: 

1. C >> AS: IDc||Pc||IDv 

2. AS >> C: Ticket 

3. C >> V: IDc||Ticket 

Ticket= 

EKv(IDc||ADc||IDv) 

C : Client, 

AS : Authentication Server, 

V : Server, IDc : ID of the 

client, Pc : Password of the 

client, 

ADc : Address of client, IDv : ID of the 

server, Kv : secret key shared by AS and V, 

|| : concatenation. 

 

2.A More Secure Authentication Dialogue 

 
There are two major problems associated with the previous approach: 

 Plaintext transmission of the password. 



 

 

 Each time a user has to enter the password. 

To solve these problems, we introduce a scheme for avoiding plaintext passwords, 

and a new server, known as ticket granting server (TGS). The hypothetical scenario is as 

follows: 

 

Once per user logon session:- 

 

1. C >> AS: IDc||IDtgs 

2. AS >> C: Ekc (Tickettgs) 

Once per type of service: 

3. C >> TGS: IDc||IDv||Tickettgs 

4. TGS >> C: ticketv 

 

Once per service session: 

5. C >> V: IDc|| Ticketv 

Tickettgs= 

Ektgs(IDc||ADc||IDtgs||TS1||Lifetime1) 

Ticketv= 

Ekv(IDc||ADc||IDv||TS2||Lifetime2) 

 

C: Client, AS: Authentication Server, V: Server, 

IDc : ID of the client,   Pc:Password of the client, ADc: Address of 

client, IDv : ID of the server, Kv: secret key shared by AS and V, 

||   : concatenation, IDtgs: ID of the TGS server, TS1, TS2: time stamps,

 lifetime: lifetime of the ticket. 

 

The new service, TGS, issues tickets to users who have been authenticated to AS. 

Thus, the user first requests a ticket-granting ticket (Tickettgs) from the AS. The client module 

in the user workstation saves this ticket. 

Each time the user requires access to a new service, the client applies to the TGS, using 

the ticket to authenticate itself. The TGS then grants a ticket for the particular service. The 

client saves each service-granting ticket and uses it to authenticate its user to a server each 

time a particular service is requested. 

Let us look at the details of this scheme: 

 

1. The client requests a ticket-granting ticket on behalf of the user by sending its user's ID 

and password to the AS, together with the TGS ID, indicating a request to use the TGS 

service 

2. The AS responds with a ticket that is encrypted with a key that is derived from the 

user's password. 

When this response arrives at the client, the client prompts the user for his or her 

password, generates the key, and attempts to decrypt the incoming message. 

If the correct password is supplied, the ticket is successfully recovered. 

 

Because only the correct user should know the password, only the correct user can 

recover the ticket. Thus, we have used the password to obtain credentials from Kerberos 



 

 

without having to transmit the password in plaintext. Now that the client has a ticket-granting 

ticket, access to any server can be obtained with steps 3 and 4: 

3. The client requests a service-granting ticket on behalf of the user. For this purpose, the 

client transmits a message to the TGS containing the user's ID, the ID of the desired 

service, and the ticket-granting ticket 

4. The TGS decrypts the incoming ticket and verifies the success of the decryption by the 

presence of its ID. It checks to make sure that the lifetime has not expired. Then it  

compares the user ID and network address with the incoming information to 

authenticate the user. If the user is permitted access to the server V, the TGS issues a 

ticket to grant access to the requested service. 

The service-granting ticket has the same structure as the ticket-granting ticket. Indeed, 

because the TGS is a server, we would expect that the same elements are needed to 

authenticate a client to the TGS and to authenticate a client to an application server. 

 

Again, the ticket contains a timestamp and lifetime. If the user wants access to the same 

service at a later time, the client can simply use the previously acquired service-granting ticket 

and need not bother the user for a password. 

 

Note that the ticket is encrypted with a secret key (Kv) known only to the TGS and the 

server, preventing alteration. 

 

Finally, with a particular service-granting ticket, the client can gain access to the 

corresponding service with step 5: 

5. The client requests access to a service on behalf of the user. For this purpose, the client  

transmits a message to the server containing the user's ID and the service-granting 

ticket. The server authenticates by using the contents of the ticket. 

 

This new scenario satisfies the two requirements of only one password query per user 

session and protection of the user password. 

 

Kerberos V4 Authentication Dialogue Message Exchange 

  

Two additional problems remain in the more secure authentication dialogue: 

 

 Lifetime associated with the ticket granting ticket. If the lifetime is very short, 

then the user will be repeatedly asked for a password. If the lifetime is long, 

then the opponent has the greater opportunity for replay. 

 

 Requirement for the servers to authenticate themselves to users. 

 

The actual Kerberos protocol version 4 is as follows 
: 

 A basic third-party authentication scheme 

 Have an Authentication Server (AS) 

o Users initially negotiate with AS to identify self 
o AS provides a non-corruptible authentication credential (ticket 

granting ticket TGT) 

 

 Have a Ticket Granting 

o Users subsequently request access to other services from TGS on basis 
of users TGT 



 

 

 
(a) Authentication service exchange: to obtain ticket granting ticket 

 

(1) C → AS : IDC II IDtgs II TS1 

 

(2) AS → C : EKc [ Kc,tgs II IDtgs II TS2 II Lifetime2 II Tickettgs] 

(b) Ticket-Granting Service Exchange: to obtain service-granting ticket 

 

 
(3) C → TGS: IDv II Tickettgs II Authenticatorc 
(4) TGS → C: EKc,tgs[Kc,y II IDv II TS4 II Ticketv] 

Tickettgs = EK,tgs[Kc,tgs II IDC II ADC II IDtgs IITS2 II Lifetime2] 

Ticketv = EKv[Kc,v II IDC II ADC II IDv IITS4 II Lifetime4] 

AuthenticatorC = EKtgs [ IDC II ADC II TS3] 

(c) Client/Server Authentication Exchange: to obtain service 

(5) C → V : Ticketv II Authenticatorc 
(6) V → C: Ekc,v[TS5 +1] 

Ticketv = EKv[Kc,v II IDC II ADC II Idv II TS4 II Lifetime4] 

 

Authenticatorc = EKtgs [IDC II ADC II TS3] 

 

Kerberos 4 Overview 

 

 

 

Fig 4.1 Overview of Kerberos 4 

  



 

 

 

 

Kerberos Realms and Multiple Kerberi 

 

A full-service Kerberos environment consisting of a Kerberos server, a number of clients, 

and a number of application servers requires the following: 

 

4. The Kerberos server must have the user ID and hashed passwords of all 

participating users in its database. All users are registered with the Kerberos server. 

5. The Kerberos server must share a secret key with each server. All servers are registered 

with the Kerberos server. 

 

Such an environment is referred to as a Kerberos 

realm The concept of realm can be explained as 

follows. 

Fig .Request for service in another Realm 

 

 

 

 

 

 

 

 

 A Kerberos realm is a set of managed nodes that share the same Kerberos database. 

The Kerberos database resides on the Kerberos master computer system, which should be kept in a 

physically secure room. A read-only copy of the Kerberos database might also reside on other 

Kerberos computer systems. 

However, all changes to the database must be made on the master computer system. 

Changing or accessing the contents of a Kerberos database requires the Kerberos master 



 

 

password. A related concept is that of a Kerberos principal, which is a service or user that is 

known to the Kerberos system. 

Each Kerberos principal is identified by its principal name. Principal names consist of 

three parts: a service or user name, an instance name, and a realm name. Networks of clients 

and servers under different administrative organizations typically constitute different realms. 

That is, it generally is not practical, or does not conform to administrative policy, to 

have users and servers in one administrative domain registered with a Kerberos server 

elsewhere. 

However, users in one realm may need access to servers in other realms, and some 

servers may be willing to provide service to users from other realms, provided that those users 

are authenticated. 

 

Kerberos provides a mechanism for supporting such inter realm authentication. For two 

realms to support inter realm authentication, a third requirement is added: 

 

6. The Kerberos server in each interoperating realm shares a secret key   with   the 

server in the other realm. The two Kerberos servers are registered with each other. 

The scheme requires that the Kerberos server in one realm trust the Kerberos server in 

the other realm to authenticate its users. Furthermore, the participating servers in the second 

realm must also be willing to trust the Kerberos server in the first realm. 

The details of the exchanges illustrated in Fig 2are as follows: 

 

C → AS :IDC II IDtgs II TS1 

AS → C :EKc[Kc,tgs ii IDtgs II TS2 II Lifetime2 II 

Tickettgs C → TGS :IDtgsrem II Tickettgs II Authenticatorc 

TGS → C :E Kc,tgs[Kc,tgsrem II IDtgsrem II TS4 

II Tickettgsrem C→ TGS rem :IDvrem II Tickettgsrem 

II Authenticatorc 

TGS rem → C :EKc,tgsrem [ Kc,vrem II IDvrem II TS6 II Ticketvrem: 

C → Vrem :Ticketvrem IIAuthenticatorc 

Differences between Versions 4 and 5 

 

Version 5 is intended to address the limitations of version 4 in two areas: 

environmental shortcomings and technical deficiencies. 

Environmental shortcomings: 

7. Encryption system dependence: 

Version 4 requires the use of DES. In version 5, ciphertext is tagged with an encryption 

type identifier so that any encryption technique may be used. 

8. Internet protocol dependence: 

Version 4 requires the use of Internet Protocol (IP) addresses. Version 5 network 

addresses are tagged with type and length, allowing any network address type to be used. 



 

 

9. Message byte ordering: 

In version 4, the sender of a message employs a byte ordering of its own choosing and 

tags the message to indicate least significant byte in lowest address In version 5, all message 

structures are defined using Abstract Syntax Notation One (ASN.1) and Basic Encoding Rules 

(BER), which provide an unambiguous byte ordering. 

10. Ticket lifetime: 

Lifetime values in version 4 are encoded in an 8-bit quantity in units of five minutes. In 

version 5, tickets include an explicit start time and end time, allowing tickets with arbitrary 

lifetimes. 

11. Authentication forwarding: 

Version 4 does not allow credentials issued to one client to be forwarded to some other 

host and used by some other client. Version 5 provides this capability. 

Technical deficiencies in the version 4 protocol: 

 

 Double encryption 
 PCBC encryption 
 Session keys 

 Password attacks 

 

The Version 5 Authentication Dialogue 

 
(a) Authentication Service Exchange: to obtain ticket-granting ticket 

 

(1) C → AS : Options II IDc II Realmc II Times II Nonce1 

(2) AS → C : Realmc II IDc II Tickettgs II EKc [ Kc,tgs II Times II Nonce1 II Realmtgs II 

IDtgs] Tickettgs = EKtgs [Flags II Kc,tgs II Realmc II IDc II ADc II Times] 

(b) Ticket – Granting Service Exchange:to obtain service-granting ticket 

 

(3) C → TGS: Optionns II IDv II Times II Nonce1 

 

(4)  TGS → C : Realmc II IDc II Ticketv II EKc,tgs[Kc,v II Times II Nonce2 II Realmv 

II IDv] Tickettgs = EKtgs[Flags II Kc,tgs II Realmc II IDc II ADc II Times] 

Ticketv = Ekv[[Flags II Kc,v II Realmc II IDc II ADc II Times] 

 

 

Authenticatorc = EKc,tgs[IDc II Realmc II TS1] 

(c) Client/Server AUTHENTICATION Exchange: to obtain service 

 

(5) C → V : Options II Ticketv II Authenticatorc 

(6) V → C : EKc,v [ TS2 II subkey II Seq #] 

Ticketv = EKv[Flags II Kc,v II Realmc II IDc II ADc II Times] 

Authenticatorc = EKc,v[IDc II Realmc II TS2 II Subkey II Seq#] 

 

 



 

 

First, consider the authentication service exchange. Message (1) is a client request for a 

ticket-granting ticket. It includes the ID of the user and the TGS. 

 
The following new elements are added: 

 Realm: Indicates realm of user 
 Options: Used to request that certain flags be set in the returned ticket 
 Times: Used by the client to request the following time settings in the ticket: 

o from : the desired start time for the requested ticket 
o till : the requested expiration time for the requested ticket 
o rtime : requested renew-till time 

Nonce: A random value to be repeated in message (2) to assure that the response is fresh and 

has not been replaced by an opponent . 

 

Message (2) returns a ticket-granting ticket, identifying information for the client, and a 

block encrypted using the encryption key based on the user's password. This block includes the 

session key to be used between the client and the TGS, times specified in message (1), the 

nonce from message (1), and TGS identifying information. 

The ticket itself includes the session key, identifying information for the client, the 

requested time values, and flags that reflect the status of this ticket and the requested options. 

Let us now compare the ticket-granting service exchange for versions 4 and 5. 

 

We see that message (3) for both versions include an authenticator, a ticket, and the 

name of the requested service. 

In addition, version 5 includes requested times and options for the ticket and a 

nonce, all with functions similar to those of message (1). The authenticator itself is essentially 

the same as the one used in version 4. 

The authenticator itself is essentially the same as the one used in version 4. 

 

Message (4) has the same structure as message (2), returning a ticket plus information 

needed by the client, the latter encrypted with the session key now shared by the client and the 

TGS. 

Finally, for the client/server authentication exchange, several new features appear in 

version 5. In message (5), the client may request as an option that mutual authentication is 

required. The authenticator includes several new fields as follows: 

 Subkey: The client's choice for an encryption key to be used to protect this specific 

application session. If this field is omitted, the session key from the ticket (Kc,v) is 

used. 

 

 Sequence number: An optional field that specifies the starting sequence number to 

be used by the server for messages sent to the client during this session. Messages 

may be sequence numbered to detect replays. 

 

 

 

  



CRYPTOGRAPHY AND NETWORK SECURITY 

UNIT 4 

 

WEB SECURITY 
 

 

Usage of internet for transferring or retrieving the data has got many benefits like speed, 

reliability, security etc. Much of the Internet's success and popularity lies in the fact that it is an 

open global network. At the same time, the fact that it is open and global makes it not very 

secure. The unique nature of the Internet makes exchanging information and transacting business 

over it inherently dangerous. 

For the exchange of information and for commerce to be secure on any network, especially the 

Internet, a system or process must be put in place that satisfies requirements for confidentiality,  

access control, authentication, integrity, and non-repudiation. These requirements are achieved 

on the Web through the use of encryption and by employing digital signature technology. There 

are many examples on the Web of the practical application of encryption. One of the most 

important is the SSL protocol. 

A summary of types of security threats faced in using the Web is given below: 

 

Web Security Threats: 



Table 16.1 provides a summary of the types of security threats faced when using the Web. One way 

to group these threats is in terms of passive and active attacks. Passive attacks include 

eavesdropping on network traffic between browser and server and gaining access to information on 

a Web site that is supposed to be restricted. Active attacks include impersonating another user, 

altering messages in transit between client and server, and altering information on a Web site. 

Another way to classify Web security threats is in terms of the location of the threat: Web server, 

Web browser, and network traffic between browser and server. 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 



 

SECURE SOCKET LAYER 
 

 

 

 Secure Socket Layer (SSL) provides security services between TCP and applications that 

use TCP. The Internet standard version is called Transport Layer Service (TLS). 

 SSL/TLS provides confidentiality using symmetric encryption and message integrity 

using a message authentication code. 

 SSL/TLS includes protocol mechanisms to enable two TCP users to determine the 

security mechanisms and services they will use. 

 Netscape originated SSL. 

SSL Architecture 

SSL is designed to make use of TCP to provide a reliable end-to-end secure service. 

SSL is not a single protocol but rather two layers of protocols, as illustrated in Figure 16.2. 
 
 

 

 
The SSL Record Protocol provides basic security services to various higher-layer protocols. In 

particular, the Hypertext Transfer Protocol (HTTP), which provides the transfer service for Web 

client/server interaction, can operate on top of SSL. Three higher-layer protocols are defined as 

part of SSL: the Handshake Protocol, The Change Cipher Spec Protocol, and the Alert Protocol.  

These SSL-specific protocols are used in the management of SSL exchanges. 

Two important SSL concepts are the SSL session and the SSL connection, which are defined in 

the specification as follows. 

 Connection: A connection is a transport (in the OSI layering model definition) that 

provides a suitable type of service.Every connection is associated with one session. 

 



 

 Session: An SSL session is an association between a client and a server. Sessions are 

created by the Handshake Protocol. Sessions define a set of cryptographic security 

parameters which can be shared among multiple connections.. 

 
A session state is defined by the following parameters. 

 Session identifier: An arbitrary byte sequence chosen by the server to identify an active 

or resumable session state. 

 Peer certificate: An X509.v3 certificate of the peer. This element of the state may be 

null. 

 Compression method: The algorithm used to compress data prior to encryption. 

 Cipher spec: Specifies the bulk data encryption algorithm (such as null,AES, etc.) and a 

hash algorithm (such as MD5 or SHA-1) used for MAC calculation. It also defines 

cryptographic attributes such as the hash_size. 

 Master secret: 48-byte secret shared between the client and server. 

 Is resumable: A flag indicating whether the session can be used to initiate new 

connections. 

 
A connection state is defined by the following parameters 

 Server and client random: Byte sequences that are chosen by the server and client for 

each connection. 

 Server write MAC secret: The secret key used in MAC operations on data sent by the 

server. 

 Client write MAC secret: The secret key used in MAC operations on data sent by the 

client. 

 Server write key: The secret encryption key for data encrypted by the server and 

decrypted by the client. 

 Client write key: The symmetric encryption key for data encrypted by the client and 

decrypted by the server. 

 Initialization vectors: When a block cipher in CBC mode is used, an initialization vector 

(IV) is maintained for each key. This field is first initialized by the SSL Handshake 

Protocol. 

 

 
 

 

 



 Sequence numbers: Each party maintains separate sequence numbers for transmitted 

and received messages for each connection. 

 
SSL Record Protocol 

The SSL Record Protocol provides two services for SSL connections: 

 Confidentiality: The Handshake Protocol defines a shared secret key that is used for 

conventional encryption of SSL payloads. 

 Message Integrity: The Handshake Protocol also defines a shared secret key that is used 

to form a message authentication code (MAC). 

 
Figure 16.3 indicates the overall operation of the SSL Record Protocol. The Record Protocol 

takes an application message to be transmitted, fragments the data into manageable blocks, 

optionally compresses the data, applies a MAC, encrypts, adds a header, and transmits the 

resulting unit in a TCP segment. Received data are decrypted, verified, decompressed, and 

reassembled before being delivered to higher-level users. 

 

 

 

 
 The first step is fragmentation. Each upper-layer message is fragmented into blocks of 

214 bytes (16384 bytes) or less. 

 Next, compression is optionally applied. Compression must be lossless and may not 

increase the content length by more than 1024 bytes.1In SSLv3 (as well as the current 

version of TLS), no compression algorithm is specified, so the default compression 

algorithm is null. 



 The next step in processing is to compute a message authentication code over the 

compressed data. For this purpose, a shared secret key is used. 

 The next step is perform encryption and adds a header 
 

 

 

 

 
SSL Handshake Protocol 

This phase is used to initiate a logical connection between client and server 
 

 

 
 



 

 
 

 It consists of 4 phases 

1. Establish Security Capabilities 

2. Server Authentication and Key Exchange 

3. Client Authentication and Key Exchange 

4. Finish 
 

 

 

 

 

 



 

 
 
 

The exchange is initiated by the client, which sends a client_hello message with the 

following parameters: 

 Version: The highest SSL version understood by the client. 
 

 Random: A client-generated random structure consisting of a 32-bit 

timestamp and 28 bytes generated by a secure random number generator. 



These values serve as nonces and are used during key exchange to prevent 

replay attacks. 

 Session ID: A variable-length session identifier. A nonzero value 

indicates that the client wishes to update the parameters of an existing 

connection or to create a new connection on this session. A zero value 

indicates that the client wishes to establish a new connection on a new 

session. 

 Cipher Suite: This is a list that contains the combinations of 

cryptographic algorithms supported by the client, in decreasing order of 

preference. Each element of the list (each cipher suite) defines both a key 

exchange algorithm and a Cipher Spec; these are discussed subsequently. 

 Compression Method: This is a list of the compression methods the client 

supports. 

 
 

Change Cipher Spec Protocol 

 

 The Change Cipher Spec Protocol is one of the three SSL-specific 

protocols that use the SSL Record Protocol, and it is the simplest. 

  This protocol consists of a single message (Figure 16.5a), which consists 

of a single byte with the value 1. 

 The sole purpose of this message is to cause the pending state to be 

copied into the current state, 

 

 

 

 

 
Alert Protocol 

 The Alert Protocol is used to convey SSL-related alerts to the peer entity 

 Each message in this protocol consists of two bytes (Figure 16.5b). The 

first byte takes the value warning (1) or fatal (2) to convey the severity 

of the message. 



 

 If the level is fatal, SSL immediately terminates the connection 

 The second byte contains a code that indicates the specific alert. 
 
 

 
Example Alerts 

fatal: unexpected message, bad record mac, decompression failure, handshake 

failure, illegal parameter 

warning: close notify, no certificate, bad certificate, unsupported certificate, 

certificate revoked, certificate expired, certificate unknown 

unexpected_message: An inappropriate message was received. 

bad_record_mac: An incorrect MAC was received. 

 
 

TRANSPORT LAYER SECURITY 

TLS was released in   response   to   the   Internet   community’s   demands   for   

a standardized protocol. TLS (Transport Layer Security), defined in RFC 2246, is 

a protocol for establishing a secure connection between a client and a server. 

TLS (Transport Layer Security) is capable of authenticating   both the client   

and the server and creating a encrypted connection between the two. 

Many protocols use TLS (Transport Layer Security) to establish secure 

connections, including HTTP, IMAP, POP3, and SMTP. 

The TLS Handshake Protocol first negotiates key exchange using an asymmetric 

algorithm such as RSA or Diffie- Hellman . 

TLS is very similar to SSLv3. 

There are some minor differences ranging from protocol version numbers to 

generation of key material. 

 
Version Number: The TLS Record Format is the same as that of the SSL 

Record Format and the fields in the header have the same meanings. The one 

difference is in version values. For the current version of TLS, the Major Version 

is 3 and the Minor Version is 3. 



Message Authentication Code: Two differences arise one being the actual 

algorithm and the other being scope of MAC calculation. TLS makes use of the 

HMAC algorithm defined in RFC 2104. SSLv3 uses the same algorithm, except 

that the padding bytes are concatenated with the secret key rather than being 

XORed with the secret key padded to the block length. For TLS, the MAC 

calculation encompasses the fields. 

 
 

 
 

 

 
The MAC calculation covers all of the fields covered by the SSLv3 

calculation, plus the field TLSCompressed. version, which is the version of the 

protocol being employed. 

 
Pseudorandom Function: TLS makes use of a pseudorandom function 

referred to as PRF to expand secrets into blocks of data for purposes of 

key generation or validation. The PRF is based on the following data 

expansion function: 

 



 

Alert Codes 

TLS supports all of the alert codes defined in SSLv3 with the exception of no_certificate 

.A number of additional codes is defined in TLS. Some of them are 

 record_overflow 

 unknown_ca 

 access_denied 

 protocol_version 

 internal_error 

 decrypt_error 

 

HTTPS 

HTTPS (HTTP over SSL) refers to the combination of HTTP and SSL to implement secure 

communication between a Web browser and a Web server. The HTTPS capability is built 

into all modern Web browsers. Its use depends on the Web server supporting HTTPS 

communication. For example, some search engines do not support HTTPS. Google provides 

HTTPS as an option: 

https://google.com. 

The principal difference seen by a user of a Web browser is that URL (uniform resource 

locator) addresses begin with https:// rather than http://. A normal HTTP connection uses port 

80. If HTTPS is specified, port 443 is used, which invokes SSL. 

When HTTPS is used, the following elements of the communication are encrypted: 

• URL of the requested document 

• Contents of the document 

• Contents of browser forms (filled in by browser user) 

• Cookies sent from browser to server and from server to browser 

• Contents of HTTP header 

HTTPS is documented in RFC 2818, HTTP Over TLS. There is no fundamental change in 

using HTTP over either SSL or TLS, and both implementations are 

referred to as HTTPS. 

 

Connection Initiation 

            For HTTPS, the agent acting as the HTTP client also acts as the TLS client. The client 

initiates a connection to the server on the appropriate port and then sends the TLS 

ClientHello to begin the TLS handshake. When the TLS handshake has finished, the client 

may then initiate the first HTTP request. All HTTP data is to be sent as TLS application data. 

Normal HTTP behavior, including retained connections, should be followed. 

There are three levels of awareness of a connection in HTTPS. At the HTTP level, an HTTP 



client requests a connection to an HTTP server by sending a connection request to the next 

lowest layer. Typically, the next lowest layer is TCP, but it also may be TLS/SSL. At the 

level of TLS, a session is established between a TLS client and a TLS server. This session 

can support one or more connections at any time. As we have seen, a TLS request to establish 

a connection begins with the establishment of a TCP connection between the TCP entity on 

the client side and the TCP entity on the server side. 

 

 

 
Connection Closure 

An HTTP client or server can indicate the closing of a connection by including the following 

line in an HTTP record: Connection: close. This indicates that the connection will be closed 

after this record is delivered. The closure of an HTTPS connection requires that TLS close 

the connection with the peer TLS entity on the remote side, which will involve closing the 

underlying TCP connection. At the TLS level, the proper way to close a connection is for 

each side to use the TLS alert protocol to send a close_notify alert. TLS implementations 

must initiate an exchange of closure alerts before closing a connection. A TLS 



implementation may, after sending a closure alert, close the connection without waiting for 

the peer to send its closure alert, generating an “incomplete close”. Note that an 

implementation that does this may choose to reuse the session. This should only be done 

when the application knows (typically through detecting HTTP message boundaries) that it 

has received all the message data that it cares about. 

HTTP clients also must be able to cope with a situation in which the underlying TCP 

connection is terminated without a prior close_notify alert and without a Connection: close 

indicator. Such a situation could be due to a programming error on the server or a 

communication error that causes the TCP 

connection to drop. However, the unannounced TCP closure could be evidence of some sort 

of attack. So the HTTPS client should issue some sort of security warning when this occurs. 

 

SECURE SHELL (SSH) 
 

 

Secure Shell (SSH) is a protocol for secure network communications designed to 

be relatively simple and inexpensive to implement. The initial version, SSH1 was 

focused on providing a secure remote logon facility to replace TELNET and other 

remote logon schemes that provided no security. SSH also provides a more 

general client/server capability and can be used for such network functions as file 

transfer and e-mail. A new version, SSH2, fixes a number of security flaws in the 

original scheme. 

SSH2 is documented as a proposed standard in IETF RFCs 4250 

through 4256. SSH client and server applications are widely 

available for most operating systems. 

It has become the method of choice for remote login and X tunneling and is 

rapidly becoming one of the most pervasive applications for encryption technology 

outside of embedded systems. 

SSH is organized as three protocols that typically run on top of TCP (Figure 16.8): 

 

 

 



 

 

 
1) Transport Layer Protocol: Provides server authentication, data 

confidentiality,and data integrity with forward secrecy (i.e., if a key is 

compromised during one session, the knowledge does not affect the security of 

earlier sessions).The transport layer may optionally provide compression.. 

 

 

Once the connection is established, the client and server exchange data, referred 

to as packets, in the data field of a TCP segment. Each packet is in the following 

format (Figure 16.10). 

• Packet length: Length of the packet in bytes, not including the packet length and MAC 

fields. 

• Padding length: Length of the random padding field. 

• Payload: Useful contents of the packet. Prior to algorithm negotiation, this 

field is uncompressed. If compression is negotiated, then in subsequent packets, 

this field is compressed. 

• Random padding: Once an encryption algorithm has been negotiated this field is added. 

 Message authentication code (MAC): If message authentication has been 

negotiated, this field contains the MAC value. 

 

 



 

 

 

 
 

2) User Authentication Protocol: Authenticates the user to the server. 

Authentication Methods: The server may require one or more of the 

following authentication methods 

 Public key: The details of this method depend on the public-key algorithm 

chosen. In essence, the client sends a message to the server that contains the 

client’s public key, with the message signed by the client’s private key. When 

the server receives this message, it checks whether the supplied key is 

acceptable for authentication and, if so, it checks whether the signature is 

correct. 

• Password: The client sends a message containing a plaintext password, which 

is protected by encryption by the Transport Layer Protocol. 

• host based: Authentication is performed on the client’s host rather than the client itself 

 
3) Connection Protocol: Multiplexes multiple logical communications channels 



over a single, underlying SSH connection. 

 

 

 

 
 
 
 
 



 

 
 
 

 



Wireless Security 

 



 

 



 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 



IEEE 802.11 Wireless LAN Overview 

IEEE 802 is a committee that has developed standards for a wide range of local area networks  

(LANs). In 1990, the IEEE 802 Committee formed a new working group, IEEE 802.11, with 

a  charter to develop a protocol and transmission specifications for wireless LANs (WLANs). 

Since that time, the demand for WLANs, at different frequencies and data rates, has 

exploded. Keeping  pace  with  this  demand,  the  IEEE  802.11  working  group  has  issued  

an  ever-expanding  list  of  standards.  



 

 

Wi-Fi Alliance  

• 802.11b first broadly accepted standard  

• Wireless  Ethernet  Compatibility  Alliance  (WECA)  industry  consortium  formed 1999  

– to assist interoperability of products  

– renamed Wi-Fi (Wireless Fidelity) Alliance  

– created a test suite to certify interoperability  

– initially for 802.11b, later extended to 802.11g  

– concerned with  a range of  WLANs markets,  including enterprise,  home, and hot spots 

 

 

 

 

 

 

 

 

 

 

 

 



IEEE 802 Protocol Architecture 

 
IEEE  802.11  standards  are  defined  within  the  structure  of  a  layered  set  of  protocols.  

This structure, used for all IEEE 802 standards, is illustrated in Figure.  The lowest layer of 

the  IEEE  802  reference  model  is  the  physical  layer,  which  includes  such  functions  as  

encoding/decoding  of  signals  and  bit  transmission/reception.  In addition, the physical 

layer includes a specification of the transmission medium.  In the case of IEEE 802.11, the 

physical layer also defines frequency bands and antenna characteristics.  

The media access control (MAC) layer, which controls access to the transmission medium to 

provide an orderly and efficient use of that capacity. The MAC layer receives data from a 

higher layer protocol,  typically the  Logical Link Control (LLC) layer, in  the form of a  

block of  data  known  as  the  MAC  service  data  unit  (MSDU).  The exact format of the 

MPDU differs somewhat for the various MAC protocols in use.  

 

 

In  most  data  link  control  protocols,  the  data  link  protocol  entity  is  responsible  not  

only  for detecting errors using the CRC, but for recovering from those errors by 



retransmitting damaged frames. In the LAN protocol architecture, these two functions are 

split between the MAC and LLC layers. The MAC layer is responsible for detecting errors 

and discarding any frames that contain errors. The LLC layer optionally keeps track of which 

frames have been successfully received and retransmits unsuccessful frames. 

 

 

 

IEEE 802.11 Network Components and Architectural Model  

 

Figure illustrates the model developed by the 802.11 working group. The smallest building 

block  of  a  wireless  LAN  is  a  basic  service  set  (BSS),  which  consists  of  wireless  

stations executing  the  same  MAC  protocol  and  competing  for  access  to  the  same  

shared  wireless medium.   

A  BSS  may  be  isolated  or  it  may  connect  to  a  backbone  distribution  system  (DS) 

through an access point (AP). The AP functions as a bridge and a relay point. In a BSS, client 

stations do not communicate directly with one another. Rather the MAC frame is first sent 

from the originating station to the AP, and then from the AP to the destination station.  

Similarly, a MAC frame from a station in the BSS to a remote station is sent from the local 

station to the AP and then relayed by the AP over the DS on its way to the destination station. 

The BSS generally corresponds to what is referred to as a cell.   

The  DS  can  be  a  switch,  a  wired  network,  or  a wireless network.  When all the stations 

in the BSS are mobile stations that communicate directly with one another, not using an AP, 

the BSS is called an independent BSS (IBSS). An IBSS is typically an ad hoc network.  In an 

IBSS, the stations all communicate directly, and no AP is involved.   A simple configuration 

is shown in above Figure 5.3, in which each station belongs to a single BSS; that is, each 

station is within wireless range only of other stations within the same BSS. It is also possible 

for two BSSs to overlap geographically, so that a single station could participate in more than 

one BSS. Further, the association between a station and a BSS is dynamic. Stations may turn 



off, come within range, and go out of range.  An extended service set (ESS) consists of two 

or more basic service sets interconnected by a distribution system. The extended service set 

appears as a single logical LAN to the logical link control (LLC) level.  

 

IEEE 802.11 Services 

 

 

IEEE  802.11  defines  nine  services  that  need  to  be  provided  by  the  wireless  LAN  to  

achieve functionality equivalent to that which is inherent to wired LANs. Table 5.1 lists the 

services & notes two ways of categorizing them.     

1. The  service  provider  can  be  either  the  station  or  the  DS.  Station  services  are 

implemented  in  every  802.11  station,  including  AP  stations.  Distribution  services  are 

provided  between  BSSs;  these  may  be  implemented  in  an  AP  or  in  another  special-

purpose device attached to the distribution system.   

2. Three  of  the  services  are  used  to  control  IEEE  802.11  LAN  access  and 

confidentiality.  Six  of  the  services  are  used  to  support  delivery  of  MSDUs  between 

stations.  If  the  MSDU  is  too  large  to  be  transmitted  in  a  single  MPDU,  it  may  be 

fragmented and transmitted in a series of MPDUs.   

MSDU  delivery,  which  is  the  basic  service,  has  already  been  mentioned.  Distribution  

is  the primary service used by stations to exchange MPDUs when the MPDUs must traverse 

the DS to get from a station in one BSS to a station in another BSS. Integration enables 

transfer of data between a station on an IEEE 802.11  LAN and a station on an integrated 

(wired) IEEE 802.x LAN.  To  deliver  a  message  within  a  DS,  the  distribution  service  

needs  to  know  where  the destination station is located. Association establishes an initial 

association between a station and an  AP.  Reassociation  enables  an  established  association  

to  be  transferred  from  one  AP  toanother,  allowing  a  mobile  station  to  move  from  one  

BSS  to  another.  Disassociation is a notification from either a station or an AP that an 

existing association is terminated.  

IEEE 802.11 Wireless LAN Security : 

The differences between wired and wireless LANs (in that wireless traffic can be monitored 

by any radio in range, and need not be physically connected) suggest the increased need for 

robust security services and mechanisms for wireless LANs.  

The original 802.11 specification included a set of security features for privacy and 



authentication that were quite weak. For privacy, 802.11 defined the Wired Equivalent 

Privacy (WEP) algorithm.  The privacy portion of the 802.11 standard contained major 

weaknesses. Subsequent to the development of WEP, the 802.11i task group  has  developed  

a  set  of  capabilities  to  address  the  WLAN  security  issues.  In order to accelerate the 

introduction of strong security into WLANs, the Wi-Fi Alliance promulgated Wi-Fi Protected 

Access (WPA) as  a  Wi-Fi  standard.  WPA is a set of security mechanisms that eliminates 

most 802.11 security issues and was based on the current state of the 802.11i standard.  

The final form of the 802.11i standard is referred to as Robust Security Network (RSN). The 

Wi-Fi  Alliance  certifies  vendors  in  compliance  with  the  full  802.11i  specification  

under  the WPA 2 program. 

 

 

802.11i Phases of Operation  

The  operation  of  an  IEEE  802.11i  RSN  can  be  broken  down  into  five  distinct  phases  

of operation, as shown in Figure 5.5. One new component is the authentication server (AS). 

The five phase are:   

  • Discovery: An AP uses messages called Beacons and Probe Responses to advertise its 

IEEE802.11i security policy. The STA uses these to identify an AP for a WLAN with which 

it wishes to communicate. The STA associates with the AP, which it uses to select the cipher 

suite and authentication mechanism when the Beacons and Probe Responses present a choice.   

 • Authentication: During this phase, the STA and AS prove their identities to each other. The 

AP  blocks  non-authentication  traffic  between  the  STA  and  AS  until  the  authentication 

transaction is successful. The AP does not participate in the authentication transaction other 

than forwarding traffic between the STA and AS.  

• Key generation and distribution: The AP and the STA perform several operations that cause 

cryptographic keys to be generated and placed on the AP and the STA. Frames are exchanged 

between the AP and STA only   

 • Protected data transfer: Frames are exchanged between the STA and the end station 

through the AP. As denoted by the shading and the encryption module icon, secure data 

transfer occurs between the STA and the AP only; security is not provided end-to-end.   

 • Connection termination:  The AP and STA exchange frames. During this phase, the secure 

connection is torn down and the connection is restored to the original state. 



 

 

 
Fig  IEEE 802.11i Phases of Operation: Capability Discovery, Authentication & Association 

The purpose of this phase is for an STA and an AP to recognize each other, agree on a set of 

security capabilities, and establish an association for future communication using those 

security capabilities  (Confidentiality  and  MPDU  integrity  protocols  for  protecting  



unicast  traffic,Authentication method, Cryptography key management approach).  

Confidentiality and integrity protocols for  protecting multicast/broadcast  traffic are  dictated 

by the  AP, since  all STAs  in a multicast group must use the same protocols and ciphers. 

The specification of a protocol, along with  the  chosen  key  length  (if  variable)  is  known  

as  a  cipher  suite.  The  options  for  the confidentiality and integrity cipher suite are as 

follows: WEP, with either a 40-bit or 104-bit key (for  backward  compatibility),  TKIP,  

CCMP,  vendor-specific  methods.  The  options  for  the authentication  and  key  

management  (AKM)  suite  are:  IEEE  802.1X,  pre-shared  key,  vendor-specific  methods).   

The  discovery  phase  consists  of  three  exchanges:  Network  and  security capability 

discovery, Open system authentication, and Association.  

The authentication phase enables mutual authentication between an STA  and an 

authentication server (AS) located in the DS. Authentication is designed to allow only 

authorized stations to use the network and to provide the STA with assurance that it is 

communicating with a legitimate network. The lower part of above Figure 5.6 shows the 

IEEE 802.11 MPDU exchange for this network. The lower part of above Figure 5.6 shows 

the IEEE 802.11 MPDU exchange for this phase. 

 

802.11i Key Management Phase 

Note from Figure that the AP controlled port is still blocked to general user traffic. Although 

the authentication is successful, the ports remain blocked until the temporal keys are installed 

in the STA and AP, which occurs during the 4-Way Handshake. During the key management 

phase, a variety of cryptographic keys are generated and distributed to STAs. There are two 

types of keys:  pairwise  keys,  used  for  communication  between  an  STA  and  an  AP;  

and  group  keys,  for multicast communication. Figure 5.8 shows the two key hierarchies. 

Pairwise keys are used for communication  between  a  pair  of  devices,  typically  between  

an  STA  and  an  AP.  These  keys form a hierarchy, beginning with a master key from which 

other keys are derived dynamically and used for a limited period of time. A pre-shared key 

(PSK) is a secret key shared by the AP and  a  STA,  and  installed  in  some  fashion  outside  

the  scope  of  IEEE  802.11i.   

The  other alternative  is  the  master  session  key  (MSK),  also  known  as  the  AAAK,  

which  is  generated using the  IEEE 802.1X  protocol during  the authentication phase, as  

described previously. The pairwise master key (PMK) is derived from the master key as 

follows:  

 



 

 
If a PSK is used, then the  PSK  is  used  as  the  PMK;  if  a  MSK  is  used,  then  the  PMK  

is  derived  from  the  MSK  by truncation (if necessary). By the end of the authentication 

phase (on EAP Success message), both the AP and the STA have a copy of their shared 

PMK. The PMK is used to generate the pairwise  

transient key (PTK), which in fact consists of three keys to be used for communication 

between an STA and AP after they have mutually authenticated. To derive the PTK, the 

PMK, the MAC addresses of the STA and AP, and nonces generated when needed are all 

input to the HMAC-SHA-1  function.  Group  keys  are  used  for  multicast  communication  

when  one  STA  sends MPDU's to multiple STAs.   



802.11i Key Management Phase  

The  upper  part  of  Figure  shows  the  MPDU  exchange  for  distributing  pairwise  keys.  

This exchange is known as the 4-way handshake. The STA and SP use this handshake to 

confirm the existence of  the PMK,  verify the  selection of  the cipher suite, and derive a  

fresh PTK  for the following data session.   

For group key distribution, the AP generates a GTK and distributes it to each STA in a 

multicast group 

 



 

 

UNIT 5 

CRYPTOGRAPHY AND NETWORK SECURITY 

 

ELECTRONIC MAIL SECURITY 

 

The protection of email from unauthorized access and inspection is known as electronic privacy. There are 

mainly two methods for proving security for electronic mails 

 Pretty Good Privacy 

 S/MIME 

Pretty Good Privacy: 

In virtually all distributed environments, electronic mail is the most heavily used network based application. 

Introduction: 

 PGP is data encryption and decryption computer program that provides privacy (Confidentiality) and 

authentication for data communication. 

 It was created by Phil Zimmermann in 1991 

Use of PGP: 

 It is used in Electronic mail 

 File storage applications. 

 PGP is an open-source, freely available software package for e-mail security. It provides authentication 

through the use of digital signature, confidentiality through the use of symmetric block encryption, 

compression using the ZIP algorithm, and e-mail compatibility using the radix-64 encoding scheme. 

 PGP incorporates tools for developing a public-key trust model and public-key certificate management 

PGP has grown explosively and is now widely used, because of following reasons: 

1. It is available free worldwide in versions that run on a variety of platforms, including Windows, UNIX, 

Macintosh, and many more. In addition, the commercial version satisfies users who want a product that 

comes with vendor support. 

2. It is based on algorithms that have survived extensive public review and are considered extremely secure. 

Specifically, the package includes RSA, DSS, and Diffie-Hellman for public-key encryption; CAST-128, 

IDEA, and 3DES for symmetric encryption; and SHA-1 for hash coding. 

 

3. It has a wide range of applicability, from corporations that wish to select and enforce a standardized 

scheme for encrypting files and messages to individuals who wish to communicate securely with others 

worldwide over the Internet and other networks. 

4. It was not developed by, nor is it controlled by, any governmental or standards organization. For those 

with an instinctive distrust of “the establishment,” this makes PGP attractive. 

NOTATIONS 

The following symbols are used in PGP 

http://en.wikipedia.org/wiki/Email


 

 

 

 

PGP SERVICES 

1) authentication 

2) confidentiality 

3) compression 

4) e-mail compatibility 

 

 

 
 

Providing authentication by using PGP: 

The sequence steps for providing authentication by using PGP 

Function Algorithms Used Description 

Digital 

signature 

DSS/SHA or RSA/SHA A hash code of a message is created using SHA-

1.This message digest is encrypted using DSS or 

RSA with the sender’s private 

key and included with the message. 

Message 

encryption 

CAST or IDEA or Three-key 

Triple DES with Diffie- 

Hellman 

or RSA 

A message is encrypted using CAST-128 or 

IDEA or 3DES with a one-time session key 

generated by the sender. The session key is 

encrypted using Diffie-Hellman or RSA with the 

recipient’s public key and included with 

the message. 

Compression ZIP A message may be compressed for storage or 

transmission using ZIP. 

E-mail 

compatibility 

Radix-64 conversion To provide transparency for e-mail applications, 

an encrypted message may be converted to an 

ASCII string using radix-64 

conversion. 



 

 

1. The sender creates a message. 

2. SHA-1 is used to generate a 160-bit hash code of the message. 

3. The hash code is encrypted with RSA using the sender’s private key, and the result is prepended to the 

message. 

4. The receiver uses RSA with the sender’s public key to decrypt and recover the hash code. 

5. The receiver generates a new hash code for the message and compares it with the decrypted hash 

code. If the two match, the message is accepted as authentic. 

 

 
 

 
Confidentiality by using PGP 

 

 

 

Steps for providing confidentiality: 

1. The sender generates a message and a random 128-bit number to be used as a session key for this message 

only. 

2. The message is encrypted using CAST-128 (or IDEA or 3DES) with the session key. 

3. The session key is encrypted with RSA using the recipient’s public key and is prepended to the message. 

4. The receiver uses RSA with its private key to decrypt and recover the session key. 

5. The session key is used to decrypt the message. 

 
 

 
PGP for both authentication and confidentiality: 



 

 

 

 

 

COMPRESSION 

As a default, PGP compresses the message after applying the signature but before Encryption. This has the benefit 

of saving space both for e-mail transmission and for file storage. 

The signature is generated before compression for two reasons 

 so can store uncompressed message & signature for later verification 

 Message encryption is applied after compression to strengthen cryptographic security. Because the 

compressed message has less redundancy than the original plaintext, cryptanalysis is more difficult. 

 

PGP uses ZIP compression algorithm 

 

E-MAIL COMPATIBILITY 

When PGP is used, at least part of the block to be transmitted is encrypted. If only the signature service is used, 

then the message digest is encrypted (with the sender’s private key). If the confidentiality service is used, the 

message plus signature (if present) are encrypted (with a one- time symmetric key).Thus, part or the entire resulting 

block consists of a stream of arbitrary 8-bit octets. 

However, many electronic mail systems only permit the use of blocks consisting of ASCII text. To accommodate 

this restriction, PGP provides the service of converting the raw 8-bit binary stream to a stream of printable ASCII 

characters. 

The scheme used for this purpose is radix-64 algorithm 

 

 It maps 3 bytes to 4 printable chars 

 It also appends a CRC to detect transmission errors PGP also 

segments messages if too big 

PGP Operation – Summary 

 



 

 

 

S/MIME 

 

 

 Secure/Multipurpose Internet Mail Extension is a security enhancement to the MIME internet email 

standard. 

 S/MIME is for industry standard for commercial and organizational use. 

 It defined in number of documents that is RFC 2630, RFC 2632, RFC 2633 

 

 

E-mail format standard, RFC 822, which is still in common use. The most recent version of this format 

specification is RFC 5322 (Internet Message Format). 

RFC 5322 (Internet Message Format). 

RFC 5322 defines a format for text messages that are sent using electronic mail. It has been the standard for 

Internet-based text mail messages and remains in common use. 

Message Structure 

 A message consists of some number of header lines (the header) followed by unrestricted text (the body). 

 A header line usually consists of a keyword, followed by a colon, followed by the keyword’s 

arguments 

Multipurpose Internet Mail Extensions: 

 

Multipurpose Internet Mail Extension (MIME) is an extension to the RFC 5322 framework that is intended to 

address some of the problems and limitations of the use of Simple Mail Transfer Protocol (SMTP). 

 
The following are limitations of the SMTP/5322 scheme. 

 

1. SMTP cannot transmit executable files or other binary objects. A number of schemes are in use for 

converting binary files into a text form that can be used by SMTP mail systems. 

2. SMTP cannot transmit text data that includes national language characters, because these are represented 

by 8-bit codes, and SMTP is limited to 7-bit ASCII. 



 

 

3. SMTP servers may reject mail message over a certain size. 

4. SMTP gateways that translate between ASCII and the character code EBCDIC do not use a consistent set 

of mappings, resulting in translation problems. 

5. SMTP gateways to X.400 electronic mail networks cannot handle non-textual data included in X.400 

messages. 

6. Some SMTP implementations do not adhere completely to the SMTP standards defined in RFC 821. 

Common problems include: 

a. Deletion, addition, or reordering of carriage return and linefeed 

b. Truncating or wrapping lines longer than 76 characters 

c. Removal of trailing white space (tab and space characters) 

d. Padding of lines in a message to the same length 

e. Conversion of tab characters into multiple space characters 

MIME is intended to resolve these problems in a manner that is compatible with existing RFC 5322 

implementations. The specification is provided in RFCs 2045 through 2049. 

MIME has 5 header fields 

The five header fields defined in MIME are 

 

 

1. MIME-Version: Must have the parameter value 1.0. 

2. Content-Type: Describes the data contained in the body with sufficient detail that the receiving user agent 

can pick an appropriate agent or mechanism to represent the data to the user 

3. Content-Transfer-Encoding: Indicates the type of transformation that has been used to represent the 

body of the message in a way that is acceptable for mail transport. 

4. Content-ID: Used to identify MIME entities uniquely in multiple contexts. 

5. Content-Description: A text description of the object with the body; this is useful when the object is not 

readable (e.g., audio data). 

 

Mime Content Types 

Describes the data contained in the body with sufficient detail 



 

 

 

 

 
 

S/MIME Functionality 

In terms of general functionality, S/MIME is very similar to PGP. Both offer the ability to sign and/or encrypt 

messages. In this subsection, we briefly summarize S/MIME capability. 

 

S/MIME provides the following functions. 
 

 

 Enveloped data: This consists of encrypted content of any type and encrypted-content encryption keys for 

one or more recipients. 

 Signed data: A digital signature is formed by taking the message digest of the content to be signed and 

then encrypting that with the private key of the signer. The content plus signature are then encoded using 

base64 encoding. A signed data message can only be viewed by a recipient with S/MIME capability. 

o encoded (message + signed digest) 

 

 Clear-signed data: As with signed data, a digital signature of the content is formed. However, in this 

case, only the digital signature is encoded using base64.As a result, recipients without S/MIME capability 

can view the message content, although they cannot verify the signature. 



 

 

 clear text message + encoded (signed digest)    Signed and enveloped data: Signed-only and encrypted-

only entities may be nested, so that encrypted data may be signed and signed data or clear-signed data may 

be encrypted. 

o nesting of signed & encrypted entities 

CRYPTOGRAPHIC ALGORITHMS 

S/MIME uses the following terminology taken from RFC 2119 (Key Words for use in RFCs to Indicate 

Requirement Levels) to specify the requirement level: 

 MUST: The definition is an absolute requirement of the specification. An implementation must include 

this feature or function to be in conformance with the specification. 

 SHOULD: There may exist valid reasons in particular circumstances to ignore this feature or function, but 

it is recommended that an implementation include the feature or function. 

S/MIME incorporates three public-key algorithms. The Digital Signature Standard (DSS) is the preferred algorithm 

for digital signature. 

 

 

 

IP SECURITY 

 

IP-level security encompasses three functional areas: authentication, confidentiality, and key 

management. The authentication mechanism assures that a received packet was, in fact, transmitted 

by the party identified as the source in the packet header. In addition, this mechanism assures that the 

packet has not been altered in transit. The confidentiality facility enables communicating nodes to 

encrypt messages to prevent eavesdropping by third parties. The key management facility is 

concerned with the secure exchange of keys. 

 

IP Security Overview: 

The IP security capabilities were designed to be used for both with the current IPv4 and the future IPv6 

protocols. 



 

 

 

Applications of IPSec: 

 

IPSec provides the capability to secure communications across a LAN, across private and public 

WANs, and across the Internet. Examples of its use include the following: 

 Secure branch office connectivity over the Internet: A company can build a secure virtual 

private network over the Internet or over a public WAN. This enables a business to rely 

heavily on the Internet and reduce its need for private networks, saving costs and network 

management overhead.

 Secure remote access over the Internet: An end user whose system is equipped with IP 

security protocols can make a local call to an Internet service provider (ISP) and gain secure 

access to a company network. This reduces the cost of toll charges for traveling employees 

and telecommuters.

 Establishing extranet and intranet connectivity with partners: IPSec can be used to 

secure communication with other organizations, ensuring authentication and confidentiality 

and providing a key exchange mechanism.

 Enhancing electronic commerce security: Even though some Web and electronic 

commerce applications have built-in security protocols, the use of IPSec enhances that 

security.

The principal feature of IPSec that enables it to support these varied applications is that it can encrypt 

and/or authenticate all traffic at the IP level. Thus, all distributed applications, including remote 

logon, client/server, e-mail, file transfer, Web access, and so on, can be secured. 

 

Figure 1.1 is a typical scenario of IPSec usage. An organization maintains LANs at dispersed 

locations. Nonsecure IP traffic is conducted on each LAN. For traffic offsite, through some sort of 

private or public WAN, IPSec protocols are used. These protocols operate in networking devices, 

such as a router or firewall, that connect each LAN to the outside world. The IPSec networking 

device will typically encrypt and compress all traffic going into the WAN, and decrypt and 

decompress traffic coming from the WAN; these operations are transparent to workstations and 

servers on the LAN. Secure transmission is also possible with individual users who dial into the 

WAN. Such user workstations must implement the IPSec protocols to provide security. 



 

 

 

 

Figure 1.1. An IP Security Scenario 

 

Benefits of IPSec: 
 

The following are the benefits of IPSec: 

 

 When IPSec is implemented in a firewall or router, it provides strong security that can be 

applied to all traffic crossing the perimeter. Traffic within a company or workgroup does not 

incur the overhead of security-related processing.

 IPSec in a firewall is resistant to bypass if all traffic from the outside must use IP, and the 

firewall is the only means of entrance from the Internet into the organization.

 IPSec is below the transport layer (TCP, UDP) and so is transparent to applications. There is 

no need to change software on a user or server system when IPSec is implemented in the 

firewall or router. Even if IPSec is implemented in end systems, upper-layer software, 

including applications, is not affected.

 IPSec can be transparent to end users. There is no need to train users on security mechanisms, 

issue keying material on a per-user basis, or revoke keying material when users leave the 

organization.

 IPSec can provide security for individual users if needed. This is useful for offsite workers 

and for setting up a secure virtual subnetwork within an organization for sensitive 

applications.

 

 



 

 

 

Routing Applications: 

 

 

In addition to supporting end users and protecting premises systems and networks, IPSec can play a 

vital role in the routing architecture required for internetworking. [HUIT98] lists the following 

examples of the use of IPSec. IPSec can assure that 

 A router advertisement (a new router advertises its presence) comes from an authorized 

router

 A neighbor advertisement (a router seeks to establish or maintain a neighbor relationship with 

a router in another routing domain) comes from an authorized router.

 A redirect message comes from the router to which the initial packet was sent.

 A routing update is not forged.

Without such security measures, an opponent can disrupt communications or divert some traffic. 

Routing protocols such as OSPF should be run on top of security associations between routers that 

are defined by IPSec. 

 

IP Security Architecture: 

The IPSec specification has become quite complex. To get a feel for the overall architecture, we 

begin with a look at the documents that define IPSec. Then we discuss IPSec services and introduce 

the concept of security association. 

 

IPSec Documents: 

The IPSec specification consists of numerous documents. The most important of these, issued in 

November of 1998, are RFCs 2401, 2402, 2406, and 2408: 

 RFC 2401: An overview of a security architecture

 RFC 2402: Description of a packet authentication extension to IPv4 and IPv6

 RFC 2406: Description of a packet encryption extension to IPv4 and IPv6

 RFC 2408: Specification of key management capabilities

Support for these features is mandatory for IPv6 and optional for IPv4. In both cases, the security 

features are implemented as extension headers that follow the main IP header. The extension header 

for authentication is known as the Authentication header; that for encryption is known as the 

Encapsulating Security Payload (ESP) header. 

 

In addition to these four RFCs, a number of additional drafts have been published by the IP Security 

Protocol Working Group set up by the IETF. The documents are divided into seven groups, as 

depicted in Figure 1.2 (RFC 2401). 

 



 

 

 Architecture: Covers the general concepts, security requirements, definitions, and 

mechanisms defining IPSec technology.

 Encapsulating Security Payload (ESP): Covers the packet format and general issues 

related to the use of the ESP for packet encryption and, optionally, authentication.

 Authentication Header (AH): Covers the packet format and general issues related to the use 

of AH for packet authentication.

 Encryption Algorithm: A set of documents that describe how various encryption algorithms 

are used for ESP.

 

 

 
Figure 1.2. IPSec Document Overview 

 Authentication Algorithm: A set of documents that describe how various authentication 

algorithms are used for AH and for the authentication option of ESP.

 Key Management: Documents that describe key management schemes.

 

 Domain of Interpretation (DOI): Contains values needed for the other documents to relate 

to each other. These include identifiers for approved encryption and authentication 

algorithms, as well as operational parameters such as key lifetime.

 

IPSec Services: 
 

IPSec provides security services at the IP layer by enabling a system to select required security 

protocols, determine the algorithm(s) to use for the service(s), and put in place any cryptographic 

keys required to provide the requested services. Two protocols are used to provide security: an 

authentication protocol designated by the header of the protocol, Authentication Header (AH); and a 



 

 

combined encryption/authentication protocol designated by the format of the packet for that protocol, 

Encapsulating Security Payload (ESP). The services are 

 Access control

 Connectionless integrity

 Data origin authentication

 Rejection of replayed packets (a form of partial sequence integrity)

 Confidentiality (encryption)

 Limited traffic flow confidentiality

Table 1.1 shows which services are provided by the AH and ESP protocols. For ESP, there are two 

cases: with and without the authentication option. Both AH and ESP are vehicles for access control, 

based on the distribution of cryptographic keys and the management of traffic flows relative to these 

security protocols. 

 

Table 1.1. IPSec Services 

 

Security Associations: 

 

A key concept that appears in both the authentication and confidentiality mechanisms for IP is the 

security association (SA). An association is a one-way relationship between a sender and a 

receiver that affords security services to the traffic carried on it. If a peer relationship is needed, 

for two-way secure exchange, then two security associations are required. Security services are 

afforded to an SA for the use of AH or ESP, but not both. 

A security association is uniquely identified by three parameters: 

Security Parameters Index (SPI): A bit string assigned to this SA and having local significance only. 

The SPI is carried in AH and ESP headers to enable the receiving system to select the SA under 

which a received packet will be processed. 

IP Destination Address: Currently, only unicast addresses are allowed; this is the address of the 

destination endpoint of the SA, which may be an end user system or a network system such as a 

firewall or router. 

Security Protocol Identifier: This indicates whether the association is an AH or ESP security 

association. 



 

 

Hence, in any IP packet, the security association is uniquely identified by the Destination Address in 

the IPv4 or IPv6 header and the SPI in the enclosed extension header (AH or ESP). 

SA Parameters: 

In each IPSec implementation, there is a nominal Security Association Database that defines the 

parameters associated with each SA. A security association is normally defined by the following 

parameters: 

 Sequence Number Counter: A 32-bit value used to generate the Sequence Number field in 

AH or ESP headers.

 Sequence Counter Overflow: A flag indicating whether overflow of the Sequence Number 

Counter should generate an auditable event and prevent further transmission of packets on 

this SA (required for all implementations).

 Anti-Replay Window: Used to determine whether an inbound AH or ESP packet is a replay.

 AH Information: Authentication algorithm, keys, key lifetimes, and related parameters 

being used with AH (required for AH implementations).

 ESP Information: Encryption and authentication algorithm, keys, initialization values, key 

lifetimes, and related parameters being used with ESP (required for ESP implementations).

 Lifetime of This Security Association: A time interval or byte count after which an SA 

must be replaced with a new SA (and new SPI) or terminated, plus an indication of which of 

these actions should occur (required for all implementations).

 IPSec Protocol Mode: Tunnel, transport, or wildcard (required for all implementations).

 Path MTU: Any observed path maximum transmission unit (maximum size of a packet that 

can be transmitted without fragmentation) and aging variables (required for all 

implementations).

The key management mechanism that is used to distribute keys is coupled to the authentication and 

privacy mechanisms only by way of the Security Parameters Index. Hence, authentication and 

privacy have been specified independent of any specific key management mechanism. 

SA Selectors: 

 
IPSec provides the user with considerable flexibility in the way in which IPSec services are applied to 

IP traffic. SAs can be combined in a number of ways to yield the desired user configuration. 

Furthermore, IPSec provides a high degree of granularity in discriminating between traffic that is 

afforded IPSec protection and traffic that is allowed to bypass IPSec, in the former case relating IP 

traffic to specific SAs. 

The means by which IP traffic is related to specific SAs (or no SA in the case of traffic allowed to 

bypass IPSec) is the nominal Security Policy Database (SPD). In its simplest form, an SPD contains 

entries, each of which defines a subset of IP traffic and points to an SA for that traffic. In more 

complex environments, there may be multiple entries that potentially relate to a single SA or multiple 



 

 

SAs associated with a single SPD entry. The reader is referred to the relevant IPSec documents for a 

full discussion. 



 

 

 

Each SPD entry is defined by a set of IP and upper-layer protocol field values, called selectors. In 

effect, these selectors are used to filter outgoing traffic in order to map it into a particular SA. 

Outbound processing obeys the following general sequence for each IP packet: 

 Compare the values of the appropriate fields in the packet (the selector fields) against the 

SPD to find a matching SPD entry, which will point to zero or more SAs.

 Determine the SA if any for this packet and its associated SPI.

 Do the required IPSec processing (i.e., AH or ESP processing).

 

The following selectors determine an SPD entry: 
 

 

 Destination IP Address: This may be a single IP address, an enumerated list or range of 

addresses, or a wildcard (mask) address. The latter two are required to support more than one 

destination system sharing the same SA (e.g., behind a firewall).

 Source IP Address: This may be a single IP address, an enumerated list or range of 

addressee, or a wildcard (mask) address. The latter two are required to support more than one 

source system sharing the same SA (e.g., behind a firewall).

 User ID: A user identifier from the operating system. This is not a field in the IP or upper-

layer headers but is available if IPSec is running on the same operating system as the user.

 Data Sensitivity Level: Used for systems providing information flow security (e.g., Secret or 

Unclassified).

 Transport Layer Protocol: Obtained from the IPv4 Protocol or IPv6 Next Header field. 

This may be an individual protocol number, a list of protocol numbers, or a range of protocol 

numbers.

 Source and Destination Ports: These may be individual TCP or UDP port values, an 

enumerated list of ports, or a wildcard port.

Authentication Header: 

 

The Authentication Header provides support for data integrity and authentication of IP packets. The 

data integrity feature ensures that undetected modification to a packet's content in transit is not 

possible. The authentication feature enables an end system or network device to authenticate the user 

or application and filter traffic accordingly; it also prevents the address spoofing attacks observed in 

today's Internet. The AH also guards against the replay attack. 

 

Authentication is based on the use of a message authentication code (MAC), hence the two parties 

must share a secret key. 

 

 



 

 

Figure 1.3 IPSec Authentication Header 

The Authentication Header consists of the following fields (Figure 1.3): 

 Next Header (8 bits): Identifies the type of header immediately following  this header.

 Payload Length (8 bits): Length of Authentication Header in 32-bit words, minus 2. For 

example, the default length of the authentication data field is 96 bits, or three 32-bit words. 

With a three-word fixed header, there are a total of six words in the header, and the Payload 

Length field has a value of 4. 

 Reserved (16 bits): For future use.

 Security Parameters Index (32 bits): Identifies a security association.

 Sequence Number (32 bits): A monotonically increasing counter value, discussed later.

 Authentication Data (variable): A variable-length field (must be an integral number of 32-

bit words) that contains the Integrity Check Value (ICV), or MAC, for this packet, discussed 

later.

 

Anti-Replay Service: 

A replay attack is one in which an attacker obtains a copy of an authenticated packet and later 

transmits it to the intended destination. The receipt of duplicate, authenticated IP packets may disrupt 

service in some way or may have some other undesired consequence. The Sequence Number field is 

designed to thwart such attacks 

When a new SA is established, the sender initializes a sequence number counter to 0. Each time that 

a packet is sent on this SA, the sender increments the counter and places the value in the Sequence 

Number field. Thus, the first value to be used is 1. If anti-replay is enabled (the default), the sender 

must not allow the sequence number to cycle past 2 32 - 1 back to zero. Otherwise, there would be 

multiple valid packets with the same sequence number. If the limit of 2 32 -1 is reached, the sender 

should terminate this SA and negotiate a new SA with a new key. 

Because IP is a connectionless, unreliable service, the protocol does not guarantee that packets will be 



 

 

delivered in order and does not guarantee that all packets will be delivered. Therefore, the IPSec 

authentication document dictates that the receiver should implement a window of size W, with a 

default of W = 64. The right edge of the window represents the highest sequence number, N, so far 

received for a valid packet. For any packet with a sequence number in the range from N - W + 1 to N 

that has been correctly received (i.e., properly authenticated), the corresponding slot in the window is 

marked (Figure 1.4). Inbound processing proceeds as follows when a packet is received: 

 

 If the received packet falls within the window and is new, the MAC is checked. If the packet 

is authenticated, the corresponding slot in the window is marked.

 If the received packet is to the right of the window and is new, the MAC is checked. If the 

packet is authenticated, the window is advanced so that this sequence number is the right edge 

of the window, and the corresponding slot in the window is marked.

 If the received packet is to the left of the window, or if authentication fails, the packet is 

discarded; this is an auditable event.

 

Figure 1.4 Antireplay Mechanism 

 

 

Integrity Check Value: 

The Authentication Data field holds a value referred to as the Integrity Check Value. The ICV is a 

message authentication code or a truncated version of a code produced by a MAC algorithm. The 

current specification dictates that a compliant implementation must support 

 HMAC-MD5-96

 HMAC-SHA-1-96

Both of these use the HMAC algorithm, the first with the MD5 hash code and the second with the 

SHA-1 hash code. In both cases, the full HMAC value is calculated but then truncated by using the 

first 96 bits, which is the default length for the Authentication Data field. 

The MAC is calculated over 

 



 

 

 IP header fields that either do not change in transit (immutable) or that are predictable in value 

upon arrival at the endpoint for the AH SA. Fields that may change in transit and whose value 

on arrival is unpredictable are set to zero for purposes of calculation at both source and 

destination.

 The AH header other than the Authentication Data field. The Authentication Data field is set 

to zero for purposes of calculation at both source and destination.

 The entire upper-level protocol data, which is assumed to be immutable in transit (e.g., a 

TCP segment or an inner IP packet in tunnel mode).

For IPv4, examples of immutable fields are Internet Header Length and Source Address. An example 

of a mutable but predictable field is the Destination Address (with loose or strict source routing). 

Examples of mutable fields that are zeroed prior to ICV calculation are the Time to Live and Header 

Checksum fields. Note that both source and destination address fields are protected, so that address 

spoofing is prevented. 

 

Transport and Tunnel Modes: 

Tunnel mode provides protection to the entire IP packet. To achieve this, after the AH or ESP fields 

are added to the IP packet, the entire packet plus security fields is treated as the payload of 

new "outer" IP packet with a new outer IP header. The entire original, or inner, packet travels 

through a "tunnel" from one point of an IP network to another; no routers along the way are able 

to examine the inner IP header. Because the original packet is encapsulated, the new, larger packet 

may have totally different source and destination addresses, adding to the security. Tunnel mode is 

used when one or both ends of an SA are a security gateway, such as a firewall or router that 

implements IPSec. With tunnel mode, a number of hosts on networks behind firewalls may engage in 

secure communications without implementing IPSec. The unprotected packets generated by such 

hosts are tunneled through external networks by tunnel mode SAs set up by the IPSec software in the 

firewall or secure router at the boundary of the local network. 

ESP in tunnel mode encrypts and optionally authenticates the entire inner IP packet, including the 

inner IP header. AH in tunnel mode authenticates the entire inner IP packet and selected portions of 

the outer IP header. 

Table 1.2 summarizes transport and tunnel mode functionality. 

Table 1.2. Tunnel Mode and Transport Mode Functionality 

 

 Transport Mode SA Tunnel Mode SA 

AH Authenticates IP payload and selected portions 

of IP header and IPv6 extension headers. 

Authenticates entire inner IP 
packet (inner header plus IP 

payload) plus selected 

portions of outer IP header and 
outer IPv6 extension headers. 



 

 

ESP Encrypts IP payload and any IPv6 

extension headers following the ESP 

header. 

Encrypts entire inner IP packet. 

ESP with 

Authentication 

Encrypts IP payload and any IPv6 extension 

headers following the ESP header. 

Authenticates IP payload but not IP header. 

Encrypts entire inner IP 

packet. Authenticates inner 

IP packet. 

 

Figure 1.5 shows two ways in which the IPSec authentication service can be used. In one case, 

authentication is provided directly between a server and client workstations; the workstation can be 

either on the same network as the server or on an external network. As long as the workstation and the 

server share a protected secret key, the authentication process is secure. This case uses a transport 

mode SA. In the other case, a remote workstation authenticates itself to the corporate firewall, either 

for access to the entire internal network or because the requested server does not support the 

authentication feature. This case uses a tunnel mode SA. 

 

 

Figure 1.5 End-to-End versus End-to-Intermediate Authentication 

 

Now we look at the scope of authentication provided by AH and the authentication header location 

for the two modes. The considerations are somewhat different for IPv4 and IPv6. Figure 1.6a shows 

typical IPv4 and IPv6 packets. In this case, the IP payload is a TCP segment; it could also be a data 

unit for any other protocol that uses IP, such as UDP or ICMP. 

For transport mode AH using IPv4, the AH is inserted after the original IP header and before the IP 

payload (e.g., a TCP segment); this is shown in the upper part of Figure 1.6b. Authentication covers 

the entire packet, excluding mutable fields in the IPv4 header that are set to zero for MAC 

calculation. 

In the context of IPv6, AH is viewed as an end-to-end payload; that is, it is not examined or processed 

by intermediate routers. Therefore, the AH appears after the IPv6 base header and the hop-by-hop, 

routing, and fragment extension headers. The destination options extension header could appear 

before or after the AH header, depending on the semantics desired. Again, authentication covers the 

entire packet, excluding mutable fields that are set to zero for MAC calculation. 

 

For tunnel mode AH, the entire original IP packet is authenticated, and the AH is inserted between 



 

 

the original IP header and a new outer IP header (Figure 1.6c). The inner IP header carries the 

ultimate source and destination addresses, while an outer IP header may contain different IP addresses 

(e.g., addresses of firewalls or other security gateways). 

 

With tunnel mode, the entire inner IP packet, including the entire inner IP header is protected by AH. 

The outer IP header (and in the case of IPv6, the outer IP extension headers) is protected except for 

mutable and unpredictable fields. 

 

 

 
Figure 1.6. Scope of AH Authentication 

 

 

Encapsulating Security Payload: 

The Encapsulating Security Payload provides confidentiality services, including confidentiality of 

message contents and limited traffic flow confidentiality. As an optional feature, ESP can also 

provide an authentication service. 



 

 

 

 

 

 

ESP Format: 

 

 

 
 

Figure 1.7. IPSec ESP format 

 

 

Figure 1.7 shows the format of an ESP packet. It contains the following fields: 

 Security Parameters Index (32 bits): Identifies a security association.

 Sequence Number (32 bits): A monotonically increasing counter value; this provides an anti-

replay function, as discussed for AH.

 Payload Data (variable): This is a transport-level segment (transport mode) or IP packet 

(tunnel mode) that is protected by encryption.

 Padding (0255 bytes): The purpose of this field is discussed later.

 Pad Length (8 bits): Indicates the number of pad bytes immediately preceding this field.

 Next Header (8 bits): Identifies the type of data contained in the payload data field by 

identifying the first header in that payload

 Authentication Data (variable): A variable-length field (must be an integral number of 32-bit 

words) that contains the Integrity. Check Value computed over the ESP packet minus the 

Authentication Data field.

 

Encryption and Authentication Algorithms: 

The Payload Data, Padding, Pad Length, and Next Header fields are encrypted by the ESP service. 

If the algorithm used to encrypt the payload requires cryptographic synchronization data, such as an 

initialization vector (IV), then these data may be carried explicitly at the beginning of the Payload 

Data field. If included, an IV is usually not encrypted, although it is often referred to as being part of 

the ciphertext. 

The current specification dictates that a compliant implementation must support DES in cipher block 



 

 

chaining (CBC) mode. A number of other algorithms have been assigned identifiers in the DOI 

document and could therefore easily be used for encryption; these include 

 Three-key triple DES

 RC5

 IDEA

 Three-key triple IDEA

 CAST

 Blowfish

As with AH, ESP supports the use of a MAC with a default length of 96 bits. Also as with AH, the 

current specification dictates that a compliant implementation must support HMAC- MD5-96 and 

HMAC-SHA-1-96. 

Padding: 

The Padding field serves several purposes: 

 If an encryption algorithm requires the plaintext to be a multiple of some number of bytes 

(e.g., the multiple of a single block for a block cipher), the Padding field is used to expand the 

plaintext (consisting of the Payload Data, Padding, Pad Length, and Next Header fields) to 

the required length.

 The ESP format requires that the Pad Length and Next Header fields be right aligned within a 

32-bit word. Equivalently, the ciphertext must be an integer multiple of 32 bits. The Padding 

field is used to assure this alignment.

 Additional padding may be added to provide partial traffic flow confidentiality by concealing 

the actual length of the payload.

Transport and Tunnel Modes: 

 

Figure 1.8 shows two ways in which the IPSec ESP service can be used. In the upper part of the 

figure, encryption (and optionally authentication) is provided directly between two hosts. Figure 1.8b 

shows how tunnel mode operation can be used to set up a virtual private network. In this example, an 

organization has four private networks interconnected across the Internet. Hosts on the internal 

networks use the Internet for transport of data but do not interact with other Internet-based hosts. By 

terminating the tunnels at the security gateway to each internal network, the configuration allows the 

hosts to avoid implementing the security capability. The former technique is support by a transport 

mode SA, while the latter technique uses a tunnel mode SA. 

 

Figure 1.8. Transport-Mode vs. Tunnel-Mode Encryption 



 

 

 

Transport Mode ESP: 

Transport mode ESP is used to encrypt and optionally authenticate the data carried by IP (e.g., a TCP 

segment), as shown in Figure 1.9a. For this mode using IPv4, the ESP header is inserted into the IP 

packet immediately prior to the transport-layer header (e.g., TCP, UDP, ICMP) and an ESP trailer 

(Padding, Pad Length, and Next Header fields) is placed after the IP packet; if authentication is 

selected, the ESP Authentication Data field is added after the ESP trailer. The entire transport-level 

segment plus the ESP trailer are encrypted. Authentication covers all of the ciphertext plus the ESP 

header. 

 

Figure 1.9. Scope of ESP Encryption and Authentication 

In the context of IPv6, ESP is viewed as an end-to-end payload; that is, it is not examined or 

processed by intermediate routers. Therefore, the ESP header appears after the IPv6 base 

header and the hop-by-hop, routing, and fragment extension headers. The destination options 

extension header could appear before or after the ESP header, depending on the semantics desired. 

For IPv6, encryption covers the entire transport-level segment plus the ESP trailer plus the destination 

options extension header if it occurs after the ESP header. Again, authentication covers the ciphertext 

plus the  



 

 

 

ESP header. 

Transport mode operation may be summarized as follows: 

 At the source, the block of data consisting of the ESP trailer plus the entire transport- layer 

segment is encrypted and the plaintext of this block is replaced with its ciphertext to form 

the IP packet for transmission. Authentication is added if this option is selected.

 The packet is then routed to the destination. Each intermediate router needs to examine and 

process the IP header plus any plaintext IP extension headers but does not need to examine 

the ciphertext.

 The destination node examines and processes the IP header plus any plaintext IP extension 

headers. Then, on the basis of the SPI in the ESP header, the destination node decrypts the 

remainder of the packet to recover the plaintext transport-layer segment.

Transport mode operation provides confidentiality for any application that uses it, thus avoiding the 

need to implement confidentiality in every individual application. This mode of operation is also 

reasonably efficient, adding little to the total length of the IP packet. One drawback to this mode is 

that it is possible to do traffic analysis on the transmitted packets. 

 

Tunnel Mode ESP: 

Tunnel mode ESP is used to encrypt an entire IP packet (Figure 1.9b). For this mode, the ESP 

header is prefixed to the packet and then the packet plus the ESP trailer is encrypted. This method can 

be used to counter traffic analysis. 

The transport mode is suitable for protecting connections between hosts that support the ESP feature, 

the tunnel mode is useful in a configuration that includes a firewall or other sort of security gateway 

that protects a trusted network from external networks. In this latter case, encryption occurs only 

between an external host and the security gateway or between two security gateways. This relieves 

hosts on the internal network of the processing burden of encryption and simplifies the key 

distribution task by reducing the number of needed keys. Further, it thwarts traffic analysis based on 

ultimate destination. 

Consider a case in which an external host wishes to communicate with a host on an internal network 

protected by a firewall, and in which ESP is implemented in the external host and the firewalls. The 

following steps occur for transfer of a transport-layer segment from the external host to the internal 

host: 

 The source prepares an inner IP packet with a destination address of the target internal host. 

This packet is prefixed by an ESP header; then the packet and ESP trailer are encrypted and 

Authentication Data may be added. The resulting block is encapsulated with a new IP header 

(base header plus optional extensions such as routing and hop-by-hop options for IPv6) 



 

 

whose destination address is the firewall; this forms the outer IP packet.

 The outer packet is routed to the destination firewall. Each intermediate router needs to 

examine and process the outer IP header plus any outer IP extension headers but does not 

need to examine the ciphertext.

 The destination firewall examines and processes the outer IP header plus any outer IP 

extension headers. Then, on the basis of the SPI in the ESP header, the destination node 

decrypts the remainder of the packet to recover the plaintext inner IP packet. This packet is 

then transmitted in the internal network.

 The inner packet is routed through zero or more routers in the internal network to the 

destination host.

Combining Security Associations: 

An individual SA can implement either the AH or ESP protocol but not both. Sometimes a particular 

traffic flow will call for the services provided by both AH and ESP. Further, a particular traffic flow 

may require IPSec services between hosts and, for that same flow, separate services between security 

gateways, such as firewalls. In all of these cases, multiple SAs must be employed for the same traffic 

flow to achieve the desired IPSec services. The term security association bundle refers to a sequence 

of SAs through which traffic must be processed to provide a desired set of IPSec services. The SAs in 

a bundle may terminate at different endpoints or at the same endpoints. 

Security associations may be combined into bundles in two ways: 

 Transport adjacency: Refers to applying more than one security protocol to the same 

IP packet, without invoking tunneling. This approach to combining AH and ESP allows for 

only one level of combination; further nesting yields no added benefit since the processing is 

performed at one IPsec instance: the (ultimate) destination.

 Iterated tunneling: Refers to the application of multiple layers of security protocols effected 

through IP tunneling. This approach allows for multiple levels of nesting, since each tunnel 

can originate or terminate at a different IPsec site along the path.

The two approaches can be combined, for example, by having a transport SA between hosts travel 

part of the way through a tunnel SA between security gateways. 

One interesting issue that arises when considering SA bundles is the order in which authentication 

and encryption may be applied between a given pair of endpoints and the ways of doing so. We 

examine that issue next. Then we look at combinations of SAs that involve at least one tunnel. 

Authentication Plus Confidentiality: 

Encryption and authentication can be combined in order to transmit an IP packet that has both 

confidentiality and authentication between hosts. We look at several approaches. 

ESP with Authentication Option 

This approach is illustrated in Figure 1.9. In this approach, the user first applies ESP to the data to be 

protected and then appends the authentication data field. There are actually two subcases: 



 

 

 Transport mode ESP: Authentication and encryption apply to the IP payload delivered to 

the host, but the IP header is not protected.

 Tunnel mode ESP: Authentication applies to the entire IP packet delivered to the outer IP 

destination address (e.g., a firewall), and authentication is performed at that destination. The 

entire inner IP packet is protected by the privacy mechanism, for delivery to the inner IP 

destination.

For both cases, authentication applies to the ciphertext rather than the plaintext. 

 

.  Transport Adjacency: 

Another way to apply authentication after encryption is to use two bundled transport SAs, with the 

inner being an ESP SA and the outer being an AH SA. In this case ESP is used without its 

authentication option. Because the inner SA is a transport SA, encryption is applied to the IP 

payload. The resulting packet consists of an IP header (and possibly IPv6 header extensions) 

followed by an ESP. AH is then applied in transport mode, so that authentication covers the 

ESP plus the original IP header (and extensions) except for mutable fields. The advantage of this 

approach over simply using a single ESP SA with the ESP authentication option is that the 

authentication covers more fields, including the source and destination IP addresses. The 

disadvantage is the overhead of two SAs versus one SA. Transport-Tunnel Bundle: 

The use of authentication prior to encryption might be preferable for several reasons. First, because 

the authentication data are protected by encryption, it is impossible for anyone to intercept the 

message and alter the authentication data without detection. Second, it may be desirable to store the 

authentication information with the message at the destination for later reference. It is more 

convenient to do this if the authentication information applies to the unencrypted message; 

otherwise the message would have to be reencrypted to verify the authentication information. 

One approach to applying authentication before encryption between two hosts is to use a bundle 

consisting of an inner AH transport SA and an outer ESP tunnel SA. In this case, authentication 

is applied to the IP payload plus the IP header (and extensions) except for mutable fields. The 

resulting IP packet is then processed in tunnel mode by ESP; the result is that the entire, 

authenticated inner packet is encrypted and a new outer IP header (and extensions) is added. 

Basic Combinations of Security Associations: 

The IPSec Architecture document lists four examples of combinations of SAs that must be supported 

by compliant IPSec hosts (e.g.workstation, server) or security gateways (e.g. firewall, router). These 

are illustrated in Figure 1.10. The lower part of each case in the figure represents the physical 

connectivity of the elements; the upper part represents logical connectivity via one or more nested 

SAs. Each SA can be either AH or ESP. For host-to-host SAs, the mode may be either transport or 

tunnel; otherwise it must be tunnel mode. 

 

 



 

 

 

Figure 1.10 Basic Combinations of Security Associations 
 

 

In Case 1, all security is provided between end systems that implement IPSec. For any two end 

systems to communicate via an SA, they must share the appropriate secret keys. Among the possible 

combinations: 

a. AH in transport mode 

b. ESP in transport mode 

c. ESP followed by AH in transport mode (an ESP SA inside an AH SA) 

d. Any one of a, b, or c inside an AH or ESP in tunnel mode 

We have already discussed how these various combinations can be used to support 

authentication, encryption, authentication before encryption, and authentication after 

encryption. 

For Case 2, security is provided only between gateways (routers, firewalls, etc.) and no hosts implement IPSec. 

This case illustrates simple virtual private network support. The security architecture document specifies that 

only a single tunnel SA is needed for this case. 

The tunnel could support AH, ESP, or ESP with the authentication option. Nested tunnels are not 

required because the IPSec services apply to the entire inner packet. 

Case 3 builds on Case 2 by adding end-to-end security. The same combinations discussed for cases 1 

and 2 are allowed here. The gateway-to-gateway tunnel provides either authentication or 

confidentiality or both for all traffic between end systems. When the gateway-to-gateway tunnel is 

ESP, it also provides a limited form of traffic confidentiality. Individual hosts can implement any 

additional. IPSec services required for given applications or given users by means of end-to-end SAs. 



 

 

Case 4 provides support for a remote host that uses the Internet to reach an organization's firewall 

and then to gain access to some server or workstation behind the firewall. Only tunnel mode is 

required between the remote host and the firewall. As in Case 1, one or two SAs may be used between 

the remote host and the local host. 
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	2. The keystream should approximate the properties of a true random number stream as close as possible. For example, there should be an approximately equal number of 1s and 0s. If the keystream is treated as a stream of bytes, then all of the 256 poss...
	3. Note from Figure 7.7 that the output of the pseudorandom number generator is conditioned on the value of the input key. To guard against brute-force attacks, the key needs to be sufficiently long. The same considerations that apply to block ciphers...
	With a properly designed pseudorandom number generator, a stream cipher can be as secure as a block cipher of comparable key length. A potential advantage of a stream cipher is that stream ciphers that do not use block ciphers as a building block are ...
	RC4:
	RC4 is a stream cipher designed in 1987 by Ron Rivest for RSA Security. It is a variable key size stream cipher with byte-oriented operations. The algorithm is based on the use of a random permutation. The RC4 algorithm is remarkably simple and quite ...
	A variablelength key of from 1 to 256 bytes (8 to 2048 bits) is used to initialize a 256-byte state vector S, with elements S[0],S[1], c,S[255]. At all times, S contains a permutation of all 8-bit numbers from 0 through 255. For encryption and decryp...
	Initialization of S
	To begin, the entries of S are set equal to the values from 0 through 255 in ascending order; that is, S[0] = 0, S[1] = 1, c, S[255] = 255 . A temporary vector, T, is also created. If the length of the key K is 256 bytes, then K is transferred to T. O...
	/* Initialization */
	for i = 0 to 255 do
	S[i] = i;
	T[i] = K[i mod keylen];
	Next we use T to produce the initial permutation of S. This involves starting with S[0] and going through to S[255], and for each S[i], swapping S[i] with another byte in S according to a scheme dictated by T[i]:
	/* Initial Permutation of S */
	j = 0;
	for i = 0 to 255 do (1)
	j = (j + S[i] + T[i]) mod 256;
	Swap (S[i], S[j]);
	Because the only operation on S is a swap, the only effect is a permutation. S still contains all the numbers from 0 through 255.
	Once the S vector is initialized, the input key is no longer used. Stream generation involves cycling through all the elements of S[i], and for each S[i], swapping S[i] with another byte in S according to a scheme dictated by the current configuration...
	/* Stream Generation */
	i, j = 0;
	while (true)
	i = (i + 1) mod 256;
	j = (j + S[i]) mod 256;
	Swap (S[i], S[j]); (1)
	t = (S[i] + S[j]) mod 256;
	k = S[t];
	To encrypt, XOR the value k with the next byte of plaintext. To decrypt, XOR the value k with the next byte of ciphertext. Following figure illustrates the RC4 logic.
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