
UNIT I 

Finite Automata and Regular Expressions 

 Finite Automata: 

A Finite Automata is the mathematical model of a digital computer. Finite Automata areused as string  

or language acceptors. They are mainly used in pattern matching tools likeLEX and Text editors. 

 The Finite State System represents a mathematical model of a system with certain input.  

 The model finally gives a certain output. The output given to the machine is processed by various 

states. These states are called intermediate states. 

 A good example of finite state systems is the control mechanism of an elevator. Thismechanism only 

remembers the current floor number pressed, it does not remember all the previously pressed numbers. 

 The finite state systems are useful in design of text editors, lexical analyzers and naturallanguage 

processing. The word “automaton” is singular and “automata” is plural. 

 An automaton in which the output depends only on the input is called an automaton withoutmemory. 

 An automaton in which the output depends on the input and state is called as automationwith memory. 

Finite Automation Model: 

 Informally, a FA – Finite Automata is a simple machine that reads an input string – one symbol at a 

time -- and then, after the input has been completely read, decides whether to accept or reject the input. 

As the symbols are read from the tape, the automaton can changeits state, to reflect how it reacts to 

what it has seen so far. 

 The Finite Automata can be represented as, 

 

i) Input Tape: Input tape is a linear tape having some cells which can hold an input symbol from  ∑. 



ii) Finite Control: It indicates the current state and decides the next state on receiving a particular input from 

the input tape. The tape reader reads the cells one by one from left to right and at any instance only one input 

symbol is read. The reading head examines read symbol and the head moves to the right side with or without 

changing the state. When the entire string is read and if finite control is in final state then the string is accepted 

otherwise rejected. The finite automaton can be represented by a transition diagram in which the vertices 

represent the states and the edges represent transitions. 

 A Finite Automaton (FA) consists of a finite set of states and set of transitions among statesin response to 

inputs. 

• Always associated with a FA is a transition diagram, which is nothing but a‘directed graph’. 

• The vertices of the graph correspond to the states of the FA. 

• The FA accepts a string of symbols from∑, x if the sequence of transitions corresponding to 

symbols in x leads from the state to an accepting state. 

 Finite Automata can be classified into two type: 

1. FA without output or Language Recognizers ( e.g. DFA and NFA) 

2. FA with output or Transducers ( e.g. Moore and Mealy machines) 

 

Finite Automata Definition: 

Finite Automaton (FA), a collection of states in which we make transitions based upon input symbols. 

Definition: A Finite Automaton 

A finite automaton (FA) is a 5-tuple (Q,Σ,q0,A,δ) where 

 Q is a finite set of states; 

 Σ is a finite input alphabet; 

 q0∈Q is the initial state; 

 A⊆Q is the set of accepting states; and 

 δ:Q×Σ→Qis the transition function. 

For any element q of Q and any symbol σ∈Σ, we interpret δ(q,σ) as the state to which the FA moves, if it is in 

state q and receives the input σ. 

For example, for the FA shown here, we would say that: 



 

 Q={q0,q1,q2,0,1,2} 

o These are simply labels for states, so we can use any symbol that is convenient. 

 Σ={0,1} 

o These are the characters that we can supply as input. 

 q0 is, well, q0 because we chose to use that matching label for the state. 

 A={q1,0} 

o The accepting states 

 δ={((q0,0),q1),((q0,1),1),((q1,0),q2),((q1,1),q2,(q2,0),q2),((q2,1),q2), ((0,0),0),((0,1),1), ((1,0),2),((1,1),0

),((2,0),1),((2,1),2)} 

o Functions are, underneath it all, sets of pairs. The first element in each pair is the input to the 

function and the second element is the result. Hence when you see ((q0,0),q1) it means that, "if 

the input is (q0,0) the result is q1 

The input is itself a pair because δ was defined as a function of the form Q×Σ→Qso the input 

has the form Q×Σ the set of all pairs in which the first element is taken from set Q and the 

second element from set Σ. 

o Of course, there may be easier ways to visualize δ. In particular, we could do it via a table with 

the input state on one axis and the input character on another: 

 
Starting State 

Input q0 q1 q2 0 1 2 

0 q1 q2 q2 0 2 1 

1 1 q2 q2 1 0 2 



o The table representation is particularly useful because it suggests an efficient implementation. If 

we numbered our states instead of using arbitrary labels: 

 
Starting State 

Input 0 1 2 4 5 6 

0 1 2 2 3 5 4 

1 4 2 2 4 3 5 

 

 Accepting the Union: 

 L1={ab,aab,abab,abb,…….} 

 L1={ab,aab,abab,abb,…….} 

Here, 

 L1= starts with a and end with b 

 L2= starts with b and ends with a 

Therefore, 

L=L1 U L2 

Or 

L=L1+L2 

State transition diagram for L1 

 The state transition diagram for the language L1 is given below − 

 

The above diagram accepts all strings starting with a and ending with b.Here, 

 q0 is the initial state. 

 q1 is an intermediate state. 



 q2 is the final state. 

 q3 is the dead state. 

State transition diagram for L2 

 The state transition diagram for language L2 is as follows − 

 

 

The above diagram accepts all strings starting with b and ending with a.Here, 

 q0: Initial state. 

 q1: Intermediate state. 

 q2: Final state. 

 q3: Dead state. 

Now the union of L1 and L2 gives the final result of language which starts and ends with different elements. 

The state transition diagram of L1 U L2  is as follows − 

 

 



 Accepting Intersection: 

Let’s understand the intersection of two DFA with an example.  

Designing a DFA for the set of string over {0, 1} such that it ends with 01 and has evennumber 0f 1’s.  

There two desired language will be formed:  

 L1= {01, 001, 101, 0101, 1001, 1101, ....} 

L2= {11, 011, 101, 110, 0011, 1100, .....} 

 

L = L1 and L2 = L1 ∩ L2 

 

State Transition Diagram for the language L1 

This is a FA for language L1  

 

It accepts all the string that accept 01 at end.  

 

State Transition Diagram for the language L2  

This is a FA for language L2 

 

It accepts all the string that accept with even number of 1’s.  

State Transition Diagram ForL1 ∩ L2 

State Intersection of L1 and L2 can be explained by language that a string over {0, 1} accept such that it 

ends with 01 and has even number of 1’s.  

L = L1 ∩ L2 

= {1001, 0101, 01001, 10001, ....} 

 



 

Thus as we see that L1 and L2 have been combined through intersection process and this final FA accept all 

the language that has even number of 1’s and is ending with 01. 

 

 Regular Language: 

The set of regular languages over an alphabet  is defined recursively as below. Any language belonging to 

this set is a regular language over . 

Definition of set of Regular Languages: 

Basis Clause: ,Ǿ{ } and {a} for any symbol a €  are regular languages. 

Inductive Clause: If Lr and Ls are regular languages, then Lr  Ls , LrLs and Lr
* are regular languages. 

 

Nothing is a regular language unless it is obtained from the above two clauses. 

 

For example, let  = {a, b}. Then since {a} and {b} are regular languages, {a, b} ( = {a}  {b} ) and {ab} ( 

= {a}{b} ) are regular languages. Also since {a} is regular, {a}* is a regular language which is the set of 

strings consisting of a's such as  , a, aa, aaa, aaaa etc. Note also that *, which is the set of strings 

consisting of a's and b's, is a regular language because {a, b} is regular. 

 

Regular Expression: 

Regular expressions are used to denote regular languages. They can represent regular languages and 

operations on them succinctly. 

The set of regular expressions over an alphabet  is defined recursively as below. Any element of that set is 

a regular expression. 

 

Basis Clause: Ǿ  and a are regular expressions corresponding to languages  ,Ǿ{ } and {a}, respectively, 



where a is an element of . 

Inductive Clause: If r and s are regular expressions corresponding to languages Lr and Ls ,then ( r + s 

),(rs) and ( r*) are regular expressions corresponding to languages Lr  Ls , LrLs and Lr
* , respectively. 

 

Nothing is a regular expression unless it is obtained from the above two clauses. 

 

FA is characterized into two types:  

1.Deterministic Finite Automata (DFA): 

DFA consists of 5 tuples {Q, Σ, q, F, δ}.  

Q : set of all states. 

Σ : set of input symbols. ( Symbols which machine takes as input ) 

q : Initial state. ( Starting state of a machine ) 

F : set of final state. 

δ : Transition Function, defined as δ : Q X Σ --> Q. 

In a DFA, for a particular input character, the machine goes to one state only. A transition function is 

defined on every state for every input symbol. Also in DFA null (or ε) move is not allowed, i.e., DFA 

cannot change state without any input character.  

For example, below DFA with Σ = {0, 1} accepts all strings ending with 0.  

  

 

Figure: DFA with  Σ = {0, 1}  

One important thing to note is, there can be many possible DFAs for a pattern. A DFA with a minimum 

number of states is generally preferred.  

 



2.Nondeterministic Finite Automata(NFA):  

 

NFA is similar to DFA except following additional features:  

1. Null (or ε) move is allowed i.e., it can move forward without reading symbols.  

2. Ability to transmit to any number of states for a particular input.  

However, these above features don’t add any power to NFA. If we compare both in terms of power, both are 

equivalent.  

Due to the above additional features, NFA has a different transition function, the rest is the same as DFA.  

δ: Transition Function 

δ:  Q X (Σ U ε ) --> 2 ^ Q.  

As you can see in the transition function is for any input including null (or ε), NFA can go to any state 

number of states. For example, below is an NFA for the above problem.  

 

NFA 

One important thing to note is, in NFA, if any path for an input string leads to a final state, then the input 

string is accepted. For example, in the above NFA, there are multiple paths for the input string “00”. Since 

one of the paths leads to a final state, “00” is accepted by the above NFA.  

Algorithm for the conversion of Regular Expression to NFA 

A Regular Expression is a representation of Tokens. But, to recognize a token, it can need a token Recognizer, 

which is nothing but a Finite Automata (NFA). So, it can convert Regular Expression into NFA. 

Input − A Regular Expression R 

Output − NFA accepting language denoted by R 

 

 

 



Method 

For ε, NFA is 

 

For a NFA is 

 

For a + b, or a | b NFA is 

 

For ab, NFA is 

 

For a*, NFA is 

 

Example1 − Draw NFA for the Regular Expression a(a+b)*ab 

Solution 

 

 



ε−𝐜𝐥𝐨𝐬𝐮𝐫𝐞 (𝐬) − It is the set of states that can be reached form state s on ε−transitions alone. 

 If s, t, u states. Initially, ε−closure (s)={s}. 

 If s→t, then ε−closure (s)={s,t}. 

 If s→t→u, then ε−closure (s)={s,t,u} 

It will be repeated until all states are covered. 

Algorithm: ε−𝐜𝐥𝐨𝐬𝐮𝐫𝐞 (𝐓) 

T is a set of states whose ε−closure (s) is to be found. 

Push All states in T on the stack 

ε −closure (T)=T 

While (stack not empty) { 

   Pop s, the top element of Stack 

   for each state t, with edge s→t { 

      ift is not present in ε−closure (T) { 

         ε−closure (T)=ε−closure (T)∪{t} 

         Push t on Stack 

      } 

   } 

} 

Example: Convert (a|b)*abb. To NFA and DFA 

 

ε 

 

Start the Conversion  

1. Begin with the start state 0 and calculate ε-closure(0). a. the set of states reachable by ε-transitions 

which includes 0 itself is { 0,1,2,4,7}. This defines a new state A in the DFA A = {0,1,2,4,7} 

2. We must now find the states that A connects to. There are two symbols in the language (a, b) so in the 

DFA we expect only two edges: from A on a and from A on b. Call these states B and C: 

 

a 
ε 2 3 ε 

star
t 

ε ε a b b 
0 1                                          6       7            8         9       10 10 

ε 4 5
 
ε 

b 

ε 



We find B and C in the following way:  

Find the state B that has an edge on a from A  

a. start with A{0,1,2,4,7}. Find which states in A have states reachable by a transitions. This set is called 

move(A,a) The set is {3,8}: move(A,a) = {3,8} 

b. now do an ε-closure on move(A,a). Find all the states in move(A,a) which are reachable with ε-transitions. We 

have 3 and 8 to consider. Starting with 3 we can get to 3 and 6 and from 6 to 1 and 7, and from 1 to 2 and 4. 

Starting with 8 we can get to 8 only. So the complete set is {1,2,3,4,6,7,8}. So  ε-closure(move(A,a)) = B = 

{1,2,3,4,6,7,8}  

This defines the new state B that has an edge on a from A 

Find the state C that has an edge on b from A 

c. start with A{0,1,2,4,7}. Find which states in A have states reachable by b transitions. This set is called 

move(A,b) The set is {5}: move(A,b) = {5}  

d. now do an ε-closure on move(A,b). Find all the states in move(A,b) which are reachable with ε-transitions. We 

have only state 5 to consider. From 5 we can get to 5, 6, 7, 1, 2, 4. So the complete set is {1,2,4,5,6,7}. So  

a. ε-closure(move(A,a)) = C = {1,2,4,5,6,7}  

This defines the new state C that has an edge on b from A 

A={0,1,2,4,7} B={1,2,3,4,6,7,8} C={1,2,4,5,6,7} 

Now that we have B and C we can move on to find the states that have a and b transitions from B and C. 

Find the state that has an edge on a from B 

e. start with B{1,2,3,4,6,7,8}. Find which states in B have states reachable by a transitions. This set is called 

move(B,a) The set is {3,8}: move(B,a) = {3,8}  

f. now do an ε-closure on move(B,a). Find all the states in move(B,a) which are reachable with ε-transitions. We 

have 3 and 8 to consider. Starting with 3 we can get to 3 and 6 and from 6 to 1 and 7, and from 1 to 2 and 4. 

Starting with 8 we can get to 8 only. So the complete set is {1,2,3,4,6,7,8}. So  ε-closure(move(A,a)) = 

{1,2,3,4,6,7,8}  

which is the same as the state B itself. In other words, we have a repeating edge to B: 

A={0,1,2,4,7}  B={1,2,3,4,6,7,8} C={1,2,4,5,6,7} 

Find the state D that has an edge on b from B  

g. start with B{1,2,3,4,6,7,8}. Find which states in B have states reachable by b transitions. This set is called 

move(B,b) The set is {5,9}: move(B,b) = {5,9}  

h. now do an ε-closure on move(B,b). Find all the states in move(B,b) which are reachable with ε-transitions. 

From 5 we can get to 5, 6, 7, 1, 2, 4. From 9 we get to 9 itself. So the complete set is {1,2,4,5,6,7,9}}. So 

 ε-closure(move(B,a)) = D = {1,2,4,5,6,7,9} This defines the new state D that has an edge on b from B  



A={0,1,2,4,7}, B={1,2,3,4,6,7,8}, C={1,2,4,5,6,7}, D{1,2,4,5,6,7,9} 

Find the state that has an edge on a from D  

i. start with D{1,2,4,5,6,7,9}. Find which states in D have states reachable by a transitions. This set is called 

move(D,a) The set is {3,8}: move(D,a) = {3,8} 

j. now do an ε-closure on move(D,a). Find all the states in move(B,a) which are reachable with ε-transitions. We 

have 3 and 8 to consider. Starting with 3 we can get to 3 and 6 and from 6 to 1 and 7, and from 1 to 2 and 4. 

Starting with 8 we can get to 8 only. So the complete set is {1,2,3,4,6,7,8}. So ε-closure(move(D,a)) = 

{1,2,3,4,6,7,8} =B  

This is a return edge to B:  

A={0,1,2,4,7}, B={1,2,3,4,6,7,8}, C={1,2,4,5,6,7}, D{1,2,4,5,6,7,9} 

Find the state E that has an edge on b from D  

k. start with D{1,2,4,5,6,7,9}. Find which states in D have states reachable by b transitions. This set is called 

move(B,b) The set is {5,10}: move(D,b) = {5,10}  

l. now do an ε-closure on move(D,b). Find all the states in move(D,b) which are reachable with ε-transitions. From 

5 we can get to 5, 6, 7, 1, 2, 4. From 10 we get to 10 itself. So the complete set is {1,2,4,5,6,7,10}}. So  

ε-closure(move(D,b) = E = {1,2,4,5,6,7,10}  

This defines the new state E that has an edge on b from D. Since it contains an accepting state, it is also an accepting 

state.  

A={0,1,2,4,7}, B={1,2,3,4,6,7,8}, C={1,2,4,5,6,7}, D={1,2,4,5,6,7,9}, E={1,2,4,5,6,7,10} 

We should now examine state C  

Find the state that has an edge on a from C 

m. start with C{1,2,4,5,6,7}. Find which states in C have states reachable by a transitions. This set is called move(C,a) 

The set is {3,8}:  

move(C,a) = {3,8}  

we have seen this before. It’s the state B  

A={0,1,2,4,7}, B={1,2,3,4,6,7,8}, C={1,2,4,5,6,7}, D={1,2,4,5,6,7,9}, E={1,2,4,5,6,7,10} 

Find the state that has an edge on b from C  

n. start with C{1,2,4,5,6,7}. Find which states in C have states reachable by b transitions. This set is called move(C,b) 

The set is {5}:  

o. move(C,b) = {5}  

p. now do an ε-closure on move(C,b). Find all the states in move(C,b) which are reachable with ε-transitions. From 5 

we can get to 5,6,7,1,2,4. which is C itself So  

ε-closure(move(C,b)) = C  

 

 

 



a 
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b b 
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b 

This defines a loop on C 

 

Finally we need to look at E. Although this is an accepting state, the regular expression allows us to repeat adding in 

more a’s and b’s as long as we return to the accepting E state finally. So 

Find the state that has an edge on a from E  

q. start with E{1,2,4,5,6,7,10}. Find which states in E have states reachable by a transitions. This set is called 

move(E,a) The set is {3,8}:  

move(E,a) = {3,8} We saw this before, it’s B 

 

Find the state that has an edge on b from E  

r. start with E{1,2,4,5,6,7,10}. Find which states in E have states reachable by b transitions. This set is called 

move(E,b) The set is {5}:  

move(A,b) = {5}  

We’ve seen this before. It’s C. Finally 

That’s it ! There is only one edge from each state for a given input character. It’s a DFA. Disregard the fact that 

each of these states is actually a group of NFA states. We can regard them as single states in the DFA. In fact it also 

requires other as an edge beyond E leading to the ultimate accepting state. Also the DFA is not yet optimized (there can 

be less states). 

However, we can make the transition table so far. Here it is: 

 

 

 

 

 

 

 

 

 

 



DFA: 

ε – closure (0) = {0,1,2,4,7} —- Let A 
Move(A,a) = {3,8} 

ε – closure (Move(A,a)) = {1,2,3,4,6,7,8}—- Let B 

 Move(A,b) = {5} 

ε – closure (Move(A,b)) = {1,2,4,5,6,7}—- Let C    

Move(B,a) = {3,8} 

ε – closure (Move(B,a)) = {1,2,3,4,6,7,8}—- B 

Move(B,b) = {5,9} 

ε – closure (Move(B,b)) = {1,2,4,5,6,7,9}—- Let D 

Move(C,a) = {3,8} 

ε – closure (Move(C,a)) = {1,2,3,4,6,7,8}—- B 

Move(C,b) = {5} 

ε – closure (Move(C,b)) = {1,2,4,5,6,7}—- C 

Move(D,a) = {3,8} 

ε – closure (Move(D,a)) = {1,2,3,4,6,7,8}—- B 

Move(D,b) = {5,10} 

ε – closure (Move(D,b)) = {1,2,4,5,6,7,10}—- Let E 

Move(E,a) = {3,8} 

ε – closure (Move(E,a)) = {1,2,3,4,6,7,8}—- B 

Move(E,b) = {5} 

ε – closure (Move(E,b)) = {1,2,4,5,6,7}—- C 
 

 

 

State Input a Input b 

A B C 

B B D 

C B C 

D B E 

E B C 

 

 

 



 

 Context free grammar 

Derivations trees: 

 Derivation tree is a graphical representation for the derivation of the given production rules of the 

context free grammar (CFG). 

 It is a way to show how the derivation can be done to obtain some string from a given set of production 

rules. It is also called as the Parse tree. 

 The Parse tree follows the precedence of operators. 

 The deepest subtree is traversed first. So, the operator in the parent node has less precedence over the 

operator in the subtree. 

Properties 

The properties of the derivation tree are given below − 

 The root node is always a node indicating the start symbols. 

 The derivation is read from left to right. 

 The leaf node is always the terminal node. 

 The interior nodes are always the non-terminal nodes. 

Example 

The production rules for the derivation tree are as follows − 

E=E+E 

E=E*E 

E=a|b|c 

Here, let the input be a*b+c 

 

Step 1:              Step 2:  Step 3:  Step 4:   Step 5 

     

 

 

 

 



Ambiguity Grammar: 

If a context free grammar G has more than one derivation tree for some string w ∈L(G), it is called 

an ambiguous grammar. There exist multiple right-most or left-most derivations for some string generated 

from that grammar. 

Problem 

Check whether the grammar G with production rules − 

X → X+X | X*X |X| a 

is ambiguous or not. 

Solution 

Let’s find out the derivation tree for the string "a+a*a". It has two leftmost derivations. 

Derivation 1 − X → X+X → a +X → a+ X*X → a+a*X → a+a*a 

Parse tree 1 − 

 

Derivation 2 − X → X*X → X+X*X → a+ X*X → a+a*X → a+a*a 

Parse tree 2 − 

 

Since there are two parse trees for a single string "a+a*a", the grammar G is ambiguous. 

 Simplified Forms: 

As we have seen, various languages can efficiently be represented by a context-free grammar. All the 

grammar are not always optimized that means the grammar may consist of some extra symbols(non-terminal). 

Having extra symbols, unnecessary increase the length of grammar. Simplification of grammar means reduction 

of grammar by removing useless symbols.  



The properties of reduced grammar are given below: 

1. Each variable (i.e. non-terminal) and each terminal of G appears in the derivation of some word in L. 

2. There should not be any production as X → Y where X and Y are non-terminal. 

3. If ε is not in the language L then there need not to be the production X → ε. 

Let us study reduction process 

 

Removal of Useless Symbols 

A symbol can be useless if it does not appear on the right-hand side of the production rule and does not take part 

in the derivation of any string. That symbol is known as a useless symbol. Similarly, a variable can be useless if 

it does not take part in the derivation of any string. That variable is known as a useless variable. 

For Example: 

1. T → aaB | abA | aaT   

2. A → aA   

3. B → ab | b   

4. C → ad   

In the above example, the variable 'C' will never occur in the derivation of any string, so the production C → ad 

is useless. So we will eliminate it, and the other productions are written in such a way that variable C can never 

reach from the starting variable 'T'. 

Production A → aA is also useless because there is no way to terminate it. If it never terminates, then it can 

never produce a string. Hence this production can never take part in any derivation. 

To remove this useless production A → aA, we will first find all the variables which will never lead to a 

terminal string such as variable 'A'. Then we will remove all the productions in which the variable 'B' occurs. 

 

 



Elimination of ε Production 

The productions of type S → ε are called ε productions. These type of productions can only be removed from 

those grammars that do not generate ε. 

Step 1: First find out all nullable non-terminal variable which derives ε. 

Step 2: For each production A → a, construct all production A → x, where x is obtained from a by removing 

one or more non-terminal from step 1. 

Step 3: Now combine the result of step 2 with the original production and remove ε productions. 

Example: 

Remove the production from the following CFG by preserving the meaning of it. 

1. S → XYX   

2. X → 0X | ε   

3. Y → 1Y | ε   

Solution: 

Now, while removing ε production, we are deleting the rule X → ε and Y → ε. To preserve the meaning of CFG 

we are actually placing ε at the right-hand side whenever X and Y have appeared. 

Let us take 

S → XYX   

If the first X at right-hand side is ε. Then 

S → YX   

Similarly if the last X in R.H.S. = ε. Then 

S → XY   

If Y = ε then 

S → XX   

 



If Y and X are ε then, 

S → X   

If both X are replaced by ε 

S → Y  Now, 

S → XY | YX | XX | X | Y   

Now let us consider 

X → 0X   

If we place ε at right-hand side for X then, 

X → 0   

X → 0X | 0   

Similarly Y → 1Y | 1 

Collectively we can rewrite the CFG with removed ε production as 

S → XY | YX | XX | X | Y   

X → 0X | 0   

Y → 1Y | 1   

Removing Unit Productions 

The unit productions are the productions in which one non-terminal gives another non-terminal. Use the 

following steps to remove unit production: 

Step 1: To remove X → Y, add production X → a to the grammar rule whenever Y → a occurs in the grammar. 

Step 2: Now delete X → Y from the grammar. 

Step 3: Repeat step 1 and step 2 until all unit productions are removed. 



For example: 

S → 0A | 1B | C   

A → 0S | 00   

B → 1 | A   

C → 01   

Solution: 

S → C is a unit production. But while removing S → C we have to consider what C gives. So, we can add a rule 

to S. 

S → 0A | 1B | 01   

Similarly, B → A is also a unit production so we can modify it as 

B → 1 | 0S | 00   

Thus finally we can write CFG without unit production as 

S → 0A | 1B | 01  

A → 0S | 00   

B → 1 | 0S | 00   

C → 01 

 Normal Forms 

Chomsky's Normal Form (CNF):  

CNF stands for Chomsky normal form. A CFG(context free grammar) is in CNF(Chomsky normal form) if all 

production rules satisfy one of the following conditions: 

o Start symbol generating ε. For example, A → ε. 

o A non-terminal generating two non-terminals. For example, S → AB. 

o A non-terminal generating a terminal. For example, S → a. 

For example: 

G1 = {S → AB, S → c, A → a, B → b}   

G2 = {S → aA, A → a, B → c}   

The production rules of Grammar G1 satisfy the rules specified for CNF, so the grammar G1 is in CNF. 

However, the production rule of Grammar G2 does not satisfy the rules specified for CNF as S → aZ contains 

terminal followed by non-terminal. So the grammar G2 is not in CNF. 

 



Steps for converting CFG into CNF 

Step 1: Eliminate start symbol from the RHS. If the start symbol T is at the right-hand side of any production, 

create a new production as: 

S1 → S   

Where S1 is the new start symbol. 

Step 2: In the grammar, remove the null, unit and useless productions. You can refer to the Simplification of 

CFG. 

Step 3: Eliminate terminals from the RHS of the production if they exist with other non-terminals or terminals. 

For example, production S → aA can be decomposed as: 

S → RA   

R → a   

Step 4: Eliminate RHS with more than two non-terminals. For example, S → ASB can be decomposed as: 

S → RS   

R → AS   

Example: 

Convert the given CFG to CNF. Consider the given grammar G1: 

S → a | aA | B   

A → aBB | ε   

B → Aa | b   

Solution: 

Step 1: We will create a new production S1 → S, as the start symbol S appears on the RHS. The grammar will 

be: 

S1 → S   

S → a | aA | B   

A → aBB | ε   

B → Aa | b   

Step 2: As grammar G1 contains A → ε null production, its removal from the grammar yields: 

S1 → S   

S → a | aA | B   

A → aBB   

B → Aa | b | a   

 

 

 

 

 



Now, as grammar G1 contains Unit production S → B, its removal yield: 

S1 → S   

S → a | aA | Aa | b   

A → aBB   

B → Aa | b | a   

Also remove the unit production S1 → S, its removal from the grammar yields: 

S0 → a | aA | Aa | b   

S → a | aA | Aa | b   

A → aBB   

B → Aa | b | a   

Step 3: In the production rule S0 → aA | Aa, S → aA | Aa, A → aBB and B → Aa, terminal a exists on RHS 

with non-terminals. So we will replace terminal a with X: 

S0 → a | XA | AX | b   

S → a | XA | AX | b   

A → XBB   

B → AX | b | a   

X → a   

Step 4: In the production rule A → XBB, RHS has more than two symbols, removing it from grammar yield: 

S0 → a | XA | AX | b   

S → a | XA | AX | b   

A → RB   

B → AX | b | a   

X → a   

R → XB  Hence, for the given grammar, this is the required CNF. 

Greibach Normal Form (GNF): 

GNF stands for Greibach normal form. A CFG(context free grammar) is in GNF(Greibach normal form) if all 

the production rules satisfy one of the following conditions: 

o A start symbol generating ε. For example, S → ε. 

o A non-terminal generating a terminal. For example, A → a. 

o A non-terminal generating a terminal which is followed by any number of non-terminals. For example, S 

→ aASB. 

For example: 

G1 = {S → aAB | aB, A → aA| a, B → bB | b}   

G2 = {S → aAB | aB, A → aA | ε, B → bB | ε}   

The production rules of Grammar G1 satisfy the rules specified for GNF, so the grammar G1 is in GNF. 

However, the production rule of Grammar G2 does not satisfy the rules specified for GNF as A → ε and B → ε 

contains ε(only start symbol can generate ε). So the grammar G2 is not in GNF. 

 



 

Steps for converting CFG into GNF 

Step 1: Convert the grammar into CNF. 

If the given grammar is not in CNF, convert it into CNF. You can refer the following topic to convert the CFG 

into CNF: Chomsky normal form 

Step 2: If the grammar exists left recursion, eliminate it. 

If the context free grammar contains left recursion, eliminate it. You can refer the following topic to eliminate 

left recursion: Left Recursion 

Step 3: In the grammar, convert the given production rule into GNF form. 

If any production rule in the grammar is not in GNF form, convert it. 

Example: 

S → XB | AA   

A → a | SA   

B → b   

X → a   

Solution: 

As the given grammar G is already in CNF and there is no left recursion, so we can skip step 1 and step 2 and 

directly go to step 3. 

The production rule A → SA is not in GNF, so we substitute S → XB | AA in the production rule A → SA as: 

S → XB | AA   

A → a | XBA | AAA   

B → b   

X → a   

The production rule S → XB and B → XBA is not in GNF, so we substitute X → a in the production rule S → 

XB and B → XBA as: 

S → aB | AA   

A → a | aBA | AAA   

B → b   

X → a   

Now we will remove left recursion (A → AAA), we get: 

S → aB | AA   

A → aC | aBAC   

C → AAC |  ε   

B → b   

X → a   



Now we will remove null production C → ε, we get: 

S → aB | AA   

A → aC | aBAC | a | aBA   

C → AAC |  AA   

B → b   

X → a   

The production rule S → AA is not in GNF, so we substitute A → aC | aBAC | a | aBA in production rule S → 

AA as: 

S → aB | aCA | aBACA | aA | aBAA   

A → aC | aBAC | a | aBA   

C → AAC   

C → aCA | aBACA | aA | aBAA   

B → b   

X → a   

The production rule C → AAC is not in GNF, so we substitute A → aC | aBAC | a | aBA in production rule C → 

AAC as: 

S → aB | aCA | aBACA | aA | aBAA   

A → aC | aBAC | a | aBA   

C →  aCAC | aBACAC | aAC | aBAAC   

C → aCA | aBACA | aA | aBAA   

B → b   

X → a   

Hence, this is the GNF form for the grammar G. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

UNIT II 

 
Introduction to Compiler 

 
 INTRODUCTION TO LANGUAGE PROCESSING

 
 As Computers became inevitable and indigenous part of human life, and several languages 

with different and more advanced features are evolved into this stream to satisfy or comfort the 

user in communicating with the machine , the development of the translators or mediator 

Software‘s have become essential to fill the huge gap between the human and machine 

understanding. 

 

 This process is called Language Processing to reflect the goal and intent of the process. On the 

way to this process to understand it in a better way, we have to be familiar with some key 

terms and concepts explained in following lines. 

 LANGUAGE TRANSLATORS

Is a computer program which translates a program written in one (Source) language to its 

equivalent program in other [Target]language. The Source program is a high level language 

where as the Target language can be any thing from the machine language of a target machine 

(between Microprocessor to Supercomputer) to another high level language program. 

Two commonly Used Translators are Compiler and Interpreter 

1. Compiler : Compiler is a program, reads program in one language called Source 

Language and translates in to its equivalent program in another Language called Target 

Language, in addition to this its presents the error information to the User. 

 

 

 
 

 

If the target program is an executable machine-language program, it can then be called 

by the users to process inputs and produce outputs. 

 

 



2. Interpreter: An interpreter is another commonly used language processor. Instead of 

producing a target program as a single translation unit, an interpreter appears to directly 

execute the operations specified in the source program on inputs supplied by the user. 

 
 LANGUAGE PROCESSING SYSTEM:

 
Based on the input the translator takes and the output it produces, a language translator 

can be called as any one of the following. 

Preprocessor: A preprocessor takes the skeletal source program as input and produces an 

extended version of it, which is the resultant of expanding the Macros, manifest constants if any, 

and including header files etc in the source file. For example, the C preprocessor is a macro 

processor that is used automatically by the C compiler to transform our source before actual 

compilation. Over and above a preprocessor performs the following activities: 

 Collects all the modules, files in case if the source program is divided into different 

modules stored at different files. 

 Expands short hands / macros into source language statements. 

 
Compiler: Is a translator that takes as input a source program written in high level 

language and converts it into its equivalent target program in machine language. In 

addition to above the compiler also 

 Reports to its user the presence of errors in the source program. 

 
 Facilitates the user in rectifying the errors, and execute the code. 

 
Assembler: Is a program that takes as input an assembly language program and 

converts it into its equivalent machine language code. 

Loader / Linker: This is a program that takes as input a relocatable code and collects 

the library functions, relocatable object files, and produces its equivalent absolute machine 

code. 

Specifically, 

 
 Loading consists of taking the relocatable machine code, altering the relocatable 

addresses, and placing the altered instructions and data in memory at the proper 

locations. 

 

 



 Linking allows us to make a single program from several files of relocatable machine 

code. These files may have been result of several different compilations, one or 

more may be library routines provided by the system available to any program 

that needs them. 

 
 

In addition to these translators, programs like interpreters, text formatters etc., may be used 

in language processing system. To translate a program in a high level language program to an 

executable one, the Compiler performs by default the compile and linking functions. 

Normally the steps in a language processing system includes Preprocessing the skeletal 

Source program which produces an extended or expanded source program or a ready to compile 

unit of the source program, followed by compiling the resultant, then linking / loading , and 

finally its equivalent executable code is produced. As I said earlier not all these steps are 

mandatory. In some cases, the Compiler only performs this linking and loading functions 

implicitly. 

 
 TYPES OF COMPILERS:

 
Based on the specific input it takes and the output it produces, the Compilers can be 

classifiedinto the following types; 

Traditional Compilers(C, C++, Pascal): These Compilers convert a source program in a HLL into 

its equivalent in native machine code or object code. 

Interpreters(LISP, SNOBOL, Java1.0): These Compilers first convert Source code into 

intermediate code, and then interprets (emulates) it to its equivalent machine code. 

 

Cross-Compilers: These are the compilers that run on one machine and produce 

code for another machine. 

Incremental Compilers: These compilers separate the source into user defined–

steps; Compiling/recompiling step- by- step; interpreting steps in a given order 

Converters (e.g. COBOL to C++): These Programs will be compiling from one high level language 

to another. 

 

 



A 

Just-In-Time (JIT) Compilers (Java, Micosoft.NET): These are the runtime compilers 

from intermediate language (byte code, MSIL) to executable code or native machine 

code. These perform type –based verification which makes the executable code more 

trustworthy 

Ahead-of-Time (AOT) Compilers (e.g., .NET ngen): These are the pre-compilers to the native 

code for Java and .NET 

Binary Compilation: These compilers will be compiling object code of one platform into 

object code of another platform. 

 BOOTSTRAPING
 

o Bootstrapping is widely used in the compilation development. 

o Bootstrapping is used to produce a self-hosting compiler. Self-hosting compiler is a type of 

compiler that can compile its own source code. 

o Bootstrap compiler is used to compile the compiler and then you can use this compiled compiler 

to compile everything else as well as future versions of itself. 

A compiler can be characterized by three languages: 

 
1. Source Language 

2. Target Language 

3. Implementation Language 
 

The T- diagram shows a compiler SCI
T for Source S, Target T, implemented in I. 

 
 

 

Follow some steps to produce a new language L for machine A: 

 

1. Create a compiler SC A for subset, S of the desired language, L using language "A" and that compiler runs 
on machine A. 

 
 

 

2.Create a compiler LCS
A for language L written in a subset of L. 



S A A A 

 

 

3. Compile LC A using the compiler SC A to obtain LC A. LC A is a compiler for language L, which runs on 
machine A and produces code for machine A. 

 

 

 

 
 

The process described by the T-diagrams is called bootstrapping. 

 

 
 PHASES OF A COMPILER:

 Due to the complexity of compilation task, a Compiler typically proceeds in a Sequence of 

compilation phases. The phases communicate with each other via clearly defined 

interfaces. Generally an interface contains a Data structure (e.g., tree), Set of exported 

functions. Each phase works on an abstract intermediate representation of the source 

program, not the source program text itself (except the first phase) 

 Compiler Phases are the individual modules which are chronologically executed to perform 

their respective Sub-activities, and finally integrate the solutions to give target code. 

 It is desirable to have relatively few phases, since it takes time to read and write immediate 

files. Following diagram (Figure1.4) depicts the phases of a compiler through which it goes 

during the compilation. There fore a typical Compiler is having the following Phases: 

 
1. Lexical Analyzer (Scanner), 

2. Syntax Analyzer (Parser), 

3. Semantic Analyzer, 

4. Intermediate Code Generator(ICG), 

5. Code Optimizer(CO) , and 

6. Code Generator(CG) 



In addition to these, it also has Symbol table management, and Error handler 

phases. Not all the phases are mandatory in every Compiler. e.g, Code Optimizer phase 

is optional in some cases. The description is given in next section. 

The Phases of compiler divided in to two parts, first three phases we are called 

as Analysis part remaining three called as Synthesis part. 

 

 
 

 
PHASE, PASSES OF A COMPILER: 

In some application we can have a compiler that is organized into what is called 

passes. Where a pass is a collection of phases that convert the input from one 

representation to a completely deferent representation. Each pass makes a complete 

scan of the input and produces its output to be processed by the subsequent pass. For 

example a two pass Assembler. 



THE FRONT-END & BACK-END OF A COMPILER 

 All of these phases of a general Compiler are conceptually divided into The Front-end, and 

The Back-end. This division is due to their dependence on either the Source Language or 

the Target machine. This model is called an Analysis & Synthesis model of a compiler. 

 The Front-end of the compiler consists of phases that depend primarily on the Source 

language and are largely independent on the target machine. For example, front-end of the 

compiler includes Scanner, Parser, Creation of Symbol table, Semantic Analyzer, and the 

Intermediate Code Generator. 

 The Back-end of the compiler consists of phases that depend on the target machine, and 

those portions don‘t dependent on the Source language, just the Intermediate language. 

In this we have different aspects of Code Optimization phase, code generation along with 

the necessary Error handling, and Symbol table operations. 

 
 

LEXICAL ANALYZER (SCANNER): The Scanner is the first phase that works as 

interface between the compiler and the Source language program and performs the 

following functions: 

 
 Reads the characters in the Source program and groups them into a stream of tokens in 

which each token specifies a logically cohesive sequence of characters, such as an 

identifier , a Keyword , a punctuation mark, a multi character operator like := . 

 The character sequence forming a token is called a lexeme of the token. 

 
 The Scanner generates a token-id, and also enters that identifiers name in the 

Symbol table if it doesn‘t exist. 

 Also removes the Comments, and unnecessary spaces. 

 
The format of the token is < Token name, Attribute value> 

 
SYNTAX ANALYZER (PARSER): The Parser interacts with the Scanner, and its 

subsequent phase Semantic Analyzer and performs the following functions: 

 

 Groups the above received, and recorded token stream into syntactic structures, 

usually into a structure called Parse Tree whose leaves are tokens. 



 The interior node of this tree represents the stream of tokens that logically 

belongs together. 

 It means it checks the syntax of program elements.



SEMANTIC ANALYZER: This phase receives the syntax tree as input, and checks the 

semantically correctness of the program. Though the tokens are valid and syntactically 

correct, it may happen that they are not correct semantically. Therefore the semantic 

analyzer checks the semantics (meaning) of the statements formed. 

o The Syntactically and Semantically correct structures are produced here in the form of 

a Syntax tree or DAG or some other sequential representation like matrix. 

 
INTERMEDIATE CODE GENERATOR(ICG): This phase takes the syntactically and 

semantically correct structure as input, and produces its equivalent intermediate 

notation of the source program. The Intermediate Code should have two important 

properties specified below: 

o It should be easy to produce, and Easy to translate into the target program. 

Example intermediate code forms are: 

o Three address codes, 

o Polish notations, etc. 

 
 

CODE OPTIMIZER: This phase is optional in some Compilers, but so useful and 

beneficial in terms of saving development time, effort, and cost. This phase performs the 

following specific functions: 

 Attempts to improve the IC so as to have a faster machine code. Typical functions 

include –Loop Optimization, Removal of redundant computations, Strength reduction, 

Frequency reductions etc. 

 Sometimes the data structures used in representing the intermediate forms may also 

be changed. 

 
CODE GENERATOR: This is the final phase of the compiler and generates the target 

code, normally consisting of the relocatable machine code or Assembly code or 

absolute machine code. 

 Memory locations are selected for each variable used, and assignment of variables 

to registers is done. 

 Intermediate instructions are translated into a sequence of machine instructions. 

 
 



The Compiler also performs the Symbol table management and Error handling throughout 

the compilation process. Symbol table is nothing but a data structure that stores different 

source 



language constructs, and tokens generated during the compilation. These two 

interact with all phases of the Compiler. 

For example the source program is an assignment statement; the following figure shows 

how thephases of compiler will process the program. 

The input source program is Position=initial+rate*60 

 
 

 



LEXICAL ANALYSIS: 

 
As the first phase of a compiler, the main task of the lexical analyzer is   to read 

the input characters of the source program, group them into lexemes, and produce as 

output tokens for each lexeme in the source program. This stream of tokens is sent to 

the parser for syntax analysis. It is common for the lexical analyzer to interact with the 

symbol table as well. 

When the lexical analyzer discovers a lexeme constituting an identifier,   it needs   

to enter that lexeme into the symbol table. This process is shown in the following figure. 

 

 

 
When lexical analyzer identifies the first token it will send it to the parser, the 

parser receives the token and calls the lexical analyzer to send next token by issuing 

the getNextToken() command. This Process continues until the lexical analyzer 

identifies all the tokens. During this process the lexical analyzer will neglect or discard 

the white spaces and comment lines. 

TOKENS, PATTERNS AND LEXEMES: 

A token is a pair consisting of a token name and   an optional attribute value.   

The token name is an abstract symbol representing a kind of lexical unit, e.g., a 

particular keyword, or a sequence of input characters denoting an identifier. The token 

names are the input symbols that the parser processes. In what follows, we shall 

generally write the name of a token in boldface. We will often refer to a token by its 

token name. 

A pattern is a description of the form that the lexemes of a token may take [ or match]. 



In the case of a keyword as a token, the pattern is just the sequence of 

characters that form the 



keyword. For identifiers and some other tokens, the pattern is a more complex structure that 

is matched by many strings. 

A lexeme is a sequence of characters in the source program that matches 

the pattern for atoken and is identified by the lexical analyzer as an instance of that 

token. 

Example: In the following C language 

statement , printf ("Total = %d\nǁ, 

score) ; 

both printf and score are lexemes matching the pattern for token id, and "Total = %d\nǁ is 

a lexeme matching literal [or string]. 

LEXICAL ANALYSIS Vs PARSING 

 
There are a number of reasons why the analysis portion of a compiler is normally 

separated intolexical analysis and parsing (syntax analysis) phases. 

1. Simplicity of design is the most important consideration. The separation of Lexical and 

Syntactic analysis often allows us to simplify at least one of these tasks. For example, a 

parser that had to deal with comments and whitespace as syntactic units would be 

considerably more complex than one that can assume comments and whitespace have 

already been removed by the lexical analyzer. 

2. Compiler efficiency is improved. A separate lexical analyzer allows us to apply 

specialized techniques that serve only the lexical task, not the job of parsing. In addition, 

specialized buffering techniques for reading input characters can speed up the compiler 

significantly. 

3. Compiler portability is enhanced: Input-device-specific peculiarities can be 

restricted to the lexical analyzer. 



 INPUT BUFFERING:

Before discussing the problem of recognizing lexemes   in the input,   let us 

examine some ways that the simple but important task of reading the source program 

can   be speeded. This task is made difficult by the fact that we often have to look one 

or more characters beyond the next lexeme before we can be sure we have the right 

lexeme. There are many situations where we need to look at least one additional 

character ahead. For instance, we cannot be sure we've seen the end of an identifier 

until we see a character that is not a letter or digit, and therefore is not part of the 

lexeme for id. In C, single-character operators like   -, =, or   < could also be the 

beginning of a two-character operator like ->, ==, or <=. Thus, we shall introduce a two-

buffer scheme that handles large look aheads safely. We then consider an 

improvement involving "sentinels" that saves time checking for the ends of buffers. 

 

Buffer Pairs 

Because of the amount of time taken to process characters and the large number 
of 

characters that must be processed during the compilation of a large source program, 

specialized buffering techniques have been developed to reduce the amount of 

overhead required to process a single input character. An important scheme involves 

two buffers that are alternately reloaded. 

 

 

 
Each buffer is of the same size N, and N is usually the size of a disk block, e.g., 

4096 bytes. Using one system read command we can read N characters in to a buffer, 

rather than using one system call per character. If fewer than N characters remain in the 

input file, then a special character, represented by eof, marks the end of the source file 

and is different from any possible character of the source program. Two pointers to the 

input are maintained: 

 

1. The Pointer lexemeBegin, marks the beginning of the current lexeme, whose 

extent we are attempting to determine. 



2. Pointer forward scans ahead until a pattern match is found; the exact 

strategy whereby this determination is made will be covered in the balance of 

this chapter. 



Once the next lexeme is determined, forward is set to the character at its right 

end. Then, after the lexeme is recorded as an attribute value of a token returned to the 

parser, 1exemeBegin is set to the character immediately after the lexeme just found. In 

Fig, we see forward has passed the end of the next lexeme, ** (the FORTRAN 

exponentiation operator), and must be retracted one position to its left. 

Advancing forward requires that we first test whether we have reached   the end 

of   one of the buffers, and if so, we must reload the other buffer from   the input, and 

move forward to the beginning of the newly loaded buffer. 

As long as we never need to look so far ahead of the actual lexeme that the sum 

of the lexeme's length plus the distance we look ahead is greaterthan N, we shall never 

overwrite the lexeme in its buffer before determining it. 

Sentinels To Improve Scanners Performance: 

 
If we use the above scheme as described, we must check, each time we 

advance forward, that we have not moved off one of the buffers; if we do, then we must 

also reload the other buffer. Thus, for each character read, we make two tests: one for 

the end of the buffer, and one to determine what character is read (the latter may be a 

multi way branch). 

We can combine the buffer-end test with the test for the current character if we 

extend each buffer to hold a sentinel character at the end. The sentinel is a special 

character that cannot be part of the source program, and a natural choice is the 

character eof. Figure shows the same arrangement as Figure above but with the 

sentinels added. Note that eof retains its use as a marker for the end of the entire 

input. 

 

 
Any eof that appears other than at the end of a buffer means that the input is at an end. 

Below Figure summarizes the algorithm for advancing forward. Notice how the first test, 

which can be part of a multiway branch based on the character pointed to by forward, is 



the only test we make, except 



in the case where we actually are at the end of a buffer or the end of the 

input. switch ( *forward++ ) 

{ 

 
case eof: if (forward is at end of first buffer ){ 

reload second buffer; 

 
forward = beginning of second buffer;} 

else if (forward is at end of second buffer 

) { 

 

reload first buffer; 

 
forward = beginning of first buffer; 

 
} 

 
else /* eof within a buffer marks the end of 

input */ terminate lexical analysis; 

break; 

} 



 SPECIFICATION OF TOKENS:

Let us understand how the language theory undertakes the following terms: 

 
1. Alphabets 

2. Strings 

3. Special symbols 

4. Language 

5. Longest match rule 

6. Operations 

7. Notations 

8. Representing valid tokens of a language in regular expression 

9. Finite automata 

1. Alphabets: Any finite set of symbols 

o {0,1} is a set of binary alphabets, 

o {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F} is a set of Hexadecimal alphabets, 

o {a-z, A-Z} is a set of English language alphabets. 

2. Strings: Any finite sequence of alphabets is called a string. 

3. Special symbols: A typical high-level language contains the following symbols: 
 

 

Arithmetic 

Symbols 

 
Addition(+), Subtraction(-), Multiplication(*), Division(/) 

 

Punctuation 

 

Comma(,), Semicolon(;), Dot(.) 

 

Assignment 

 

= 

 

Special 

assignment 

 
+=, -=, *=, /= 

 

Comparison 

 

==, !=. <. <=. >, >= 

 

Preprocessor 

 

# 

4. Language: A language is considered as a finite set of strings over some finite set of 
alphabets. 

5. Longest match rule: When the lexical analyzer read the source-code, it scans the code 
letter by letter and when it encounters a whitespace, operator symbol, or special symbols 
it decides that a word is completed. 



 
 
 
 
 
 
 
 
 
 
 
 
 
then
: 

6. Operations: The various operations on languages are: 

 Union of two languages L and M is written as, L U M = {s | s is in L or s is in M} 

 Concatenation of two languages L and M is written as, LM = {st | s is in L and t 
is in M} 

 The Kleene Closure of a language L is written as, L* = Zero or more occurrence 
of language L. 

7. Notations: If r and s are regular expressions denoting the languages L(r) and L(s), then 

 Union : L(r)UL(s) 

 Concatenation : L(r)L(s) 

 Kleene closure : (L(r))* 

8. Representing valid tokens of a language in regular expression:If x is a regular expression, 

 

o x* means zero or more occurrence of x. 

o x+ means one or more occurrence of x. 

9. Finite automata: Finite automata is a state machine that takes a string of symbols as input 
and changes its state accordingly.If the input string is successfully processed and the 
automata reaches its final state, it is accepted.The mathematical model of finite automata 
consists of: 

o Finite set of states (Q) 

o Finite set of input symbols (Σ) 

o One Start state (q0) 

o Set of final states (qf) 

o Transition function (δ) 

The transition function (δ) maps the finite set of state (Q) to a finite set of input symbols (Σ), Q 
× Σ ➔ Q 

 
 
 

 RECOGNITION OF TOKENS

 
Starting point is the language grammar to understand the 

tokens: stmt -> if expr then stmt | if expr then stmt 

else stmt | Ɛ expr -> term relop term | term 

term -> id | number 

 
The next step is to formalize the 

patterns: digit -> [0-9] 

Digits -> digit+ 



number -> digit(.digits)? (E[+-]? 

Digit)? letter -> [A-Za-z_] 

id -> letter 

(letter|digit)* If -> if 

Then -> 

then Else -> 

else 

Relop -> < | > | <= | >= | = | <> 

 
We also need to handle whitespaces: ws -> (blank | tab | newline)+ 

 

Transition diagram for relop 

 

 
Transition diagram for reserved words and identifiers 

 
 



Transition diagram for unsigned numbers 
 
 

 

 

 

Transition diagram for whitespace 

 

 
 A LANGUAGE FOR SPECIFYING LEXICAL ANALYZERS

There is a wide range of tools for constructing lexical analyzers. 

Lex 

YACC 

Lex is a computer program that generates lexical analyzers. Lex is commonly 

used with the yacc parser generator. 

LEX  
 

o Lex is a program that generates lexical analyzer. It is used with YACC parser generator. 

o The lexical analyzer is a program that transforms an input stream into a sequence 

of tokens. 

o It reads the input stream and produces the source code as output through 

implementing the lexical analyzer in the C program. 

The function of Lex is as follows: 

o Firstly lexical analyzer creates a program lex.1 in the Lex language. Then Lex compiler 

runs the lex.1 program and produces a C program lex.yy.c. 

o Finally C compiler runs the lex.yy.c program and produces an object program a.out. 

o a.out is lexical analyzer that transforms an input stream into a sequence of tokens. 



 

 
 

Lex Specification 

A Lex program consists of three parts: 

{ definitions } 

%% 

{ rules } 

%% 

{ user subroutines } 

Definitions include declarations of variables, constants, and regular definitions 

 
 

Rules are statements of the 

form p1 {action1} 

p2 {action2} 

… 

pn {actionn} 

where pi is regular expression and actioni describes what action the lexical analyzer 

should take when pattern pi matches a lexeme. Actions are written in C code. 

 

User subroutines are auxiliary procedures needed by the actions. These 

can be compiled separately and loaded with the lexical analyzer. 

YACC- YET ANOTHER COMPILER-COMPILER 

 
o YACC stands for Yet Another Compiler Compiler. 

o YACC provides a tool to produce a parser for a given grammar. 

o YACC is a program designed to compile a LALR (1) grammar. 

o It is used to produce the source code of the syntactic analyzer of the language 

produced by LALR (1) grammar. 



o The input of YACC is the rule or grammar and the output is a C program. 

 
These are some points about 

YACC: 

 

Input: A CFG- file.y 
 

Output: A parser y.tab.c (yacc) 

 
o The output file "file.output" contains the parsing tables. 

o The file "file.tab.h" contains declarations. 

o The parser called the yyparse (). 

o Parser expects to use a function called yylex () to get tokens. 
 

The basic operational sequence is as follows: 

 

 
This file contains the desired grammar in YACC format. 

 

 

 

 

It shows the YACC program. 

 

 
It is the c source program created by YACC. 

 
 



C Compiler 
 

 

 

Executable file that will parse grammar given in gram.Y 

 
 
 

 DESIGN OF LEXICAL ANALYSER: 
 

A lexical analyzer generator systematically translates regular expressions to NFA which 

is then translated to an efficient DFA. 

 

 
1 The Structure of the Generated Analyzer 

2 Pattern Matching Based on NFA's 

3 DFA's for Lexical Analyzers 
 

4 Implementing the Lookahead Operator 
 

1. The Structure of the Generated Analyzer 
 

Below Figure Overviews the architecture of a lexical analyzer generated by Lex. 

The program that serves as the lexical analyzer includes a fixed program that simulates 

an automaton; at this point we leave open whether that automaton is deterministic or 

nondeterministic. The rest of the lexical analyzer consists of components that are 

created from the Lex program by Lex itself. 



 
 

 

In above diagram explains a Lex program is turned into a transition table and 

actions, which are used by a finite-automaton simulator 

These components are: 

 
 A transition table for the automaton. 

 
 Those functions that are passed directly through Lex to the output 

 
 The actions from the input program, which appear as fragments of code to 

be invoked at the appropriate time by the automaton simulator. 

 
To construct the automaton, we begin by taking each regular-expression pattern 

in the Lex program and converting it to an NFA. We need a single automaton that will 

recognize lexemes matching any of the patterns in the program, so we combine all the 

NFA's into one by introducing a new start state with e-transitions to each of the start 

states of the NFA's N{ for pattern pi. This construction is shown in Fig. 3.50. 

 
Example: We shall illustrate the ideas of this section with the following simple, abstract 

example: 



 
 

Note that these three patterns present some conflicts of the type discussed in 

earlier. In particular, string abb matches both the second and third patterns, but 

we shall consider it a lexeme for pattern p2, since that pattern is listed first in the 

above Lex program. Then, input strings such as aabbb • • • have many prefixes 

that match the third pattern. The Lex rule is to take the longest, so we continue 

reading 6's, until another a is met, whereupon we report the lexeme to be the 

initial a's followed by as many 6's as there are. 

 
Three NFA's that recognize the three patterns. The third is a simplification 

of what would come out of Algorithm. Then, Fig. 3.52 shows these three NFA's 

combined into a single NFA by the addition of start state 0 and three e-

transitions. • 

 

2. Pattern Matching Based on NFA's 
 

If the lexical analyzer simulates an NFA such as that of Fig. 3.52, then it 

must read   input   beginning   at   the   point   on   its   input   which   we   have   

referred   to as lexemeBegin. As it moves the pointer called forward ahead in the 

input, it calculates the set of states it is in at each point, following Algorithm. 

Eventually, the NFA simulation reaches a point on the input where there 

are no next states. At that point, there is no hope that any longer prefix of the 

input would ever get the NFA to an accepting state; rather, the set of states 

will always be empty. Thus, we are ready to decide on the longest prefix that is a 

lexeme matching some pattern. 



 
 
 
 

 

 

We look backwards in the sequence of sets of states, until we find a set that 

includes one or more accepting states. If there are several accepting states in 

that set, pick the one associated with the earliest   pattern pi in   the   list   from   

the Lex program.   Move the forward pointer back to the end of the lexeme, and 

perform the action Ai associated with pattern pi. 



Example: Suppose we have the patterns of the input begins aaba. Figure 3.53 

shows the sets of states of the NFA of Fig. 3.52 that we enter, starting with e-

closure of the initial state 0, which is {0,1,3,7}, and proceeding from there. After 

reading the fourth input symbol, we are in an empty set of states, since in Fig. 

3.52, there are no transitions out of state 8 on input a. 

Thus, we need to back up, looking for a set of states that includes an 

accepting state. Notice that, as indicated in Fig. 3.53, after reading a we are in a 

set that includes state 2 and therefore indicates that the pattern a has been 

matched. However, after reading aab, we are in state 8, which indicates that a * 

b + has been matched; prefix aab is the longest prefix that gets us to an 

accepting state. We therefore select aab as the lexeme, and execute action A3, 

which should include a return to the parser indicating that the token whose 

pattern is p3 = a * b + has been found. • 

 

 
3. DFA's for Lexical Analyzers 

 
Another architecture, resembling the output of Lex, is to convert the NFA 

for all the patterns into an equivalent DFA, using the subset construction of 

Algorithm 3.20. Within each DFA state, if there are one or more accepting 

NFA states, determine the first pattern whose accepting state is represented, 

and make that pattern the output of the DFA state. 

 

 
Example : Figure 3.54 shows a transition diagram based on the DFA that is 

constructed by the subset construction from the NFA in Fig. 3.52. The accepting states 

are labeled by the pattern that is identified by that state. For instance, the state {6,8} 

has two accepting states, corresponding to patterns abb and a * b + . Since the former 

is listed first, that is the pattern associated with state {6,8} . • 

We use the DFA in a lexical analyzer much as we did the NFA. We simulate the 

DFA until at some point there is no next state (or strictly speaking, the next state 

is 0, the dead state corresponding to the empty set of NFA states). At that point, we 

back up through the sequence of states we entered and, as soon as we meet an 

accepting DFA state, we perform the action associated with the pattern for that state. 



Example : Suppose the DFA of Fig. 3.54 is given input abba. The se-quence of 

states entered is 0137,247,58,68, and at the final a there is no tran-sition out of state 

68. Thus, we consider the sequence from the end, and in this case, 68 itself is an 

accepting state that reports pattern p2 = abb . • 

 

 

4. Implementing the Lookahead Operator 
 

Lex lookahead operator / in a Lex pattern r\/r2 is sometimes necessary, 

because the pattern r*i for a particular token may need to describe some 

trailing context r2  in order to correctly identify the actual lexeme. When converting 

the pattern r\/r2 to an NFA, we treat the / as if it were e, so we do not actually 

look for a / on the input. However, if the NFA recognizes a prefix xy of the input 

buffer as matching this regular expression, the end of the lexeme is not 

where the NFA entered its accepting state. Rather the end occurs when the 

NFA enters a state s such that 

1. s has an e-transition on the (imaginary) /, 
 

2. There is a path from the start state of the NFA to state s that spells out x. 
 

3. There is a path from state s to the accepting state that spells out y. 
 

4. x is as long as possible for any xy satisfying conditions 1-3. 
 

If there is only one e-transition state on the imaginary / in the NFA, then 

the end of the lexeme occurs when this state is entered for the last time as the 

following example illustrates. If the NFA has more than one e-transition state on 

the imaginary /, then the general problem of finding the correct state s is much 

more difficult. 



Dead States in DFA's 
 

Technically, the automaton in Fig. 3.54 is not quite a DFA. The reason 

is that a DFA has a transition from every state on every input symbol in its 

input alphabet. Here, we have omitted transitions to the dead state 0, and we 

have therefore omitted the transitions from the dead state to itself on every 

input. Previous NFA-to-DFA examples did not have a way to get from the start 

state to 0, but the NFA of Fig. 3.52 does. 

However, when we construct a DFA for use in a lexical analyzer, it is 

important that we treat the dead state differently, since we must know when 

there is no longer any possibility of recognizing a longer lexeme. Thus, we 

suggest always omitting transitions to the dead state and elimi-nating the dead 

state itself. In fact, the problem is harder than it appears, since an NFA-to-DFA 

construction may yield several states that cannot reach any accepting state, 

and we must know when any of these states have been reached. Section 

3.9.6 discusses how to combine all these states into one dead state, so their 

identification becomes easy. It is also interesting to note that if we construct a 

DFA from a regular expression using Algorithms 3.20 and 3.23, then the DFA 

will not have any states besides 0 that cannot lead to an accepting state. 

 

 

 

 

 

 

 

 



     UNIT-3  

     PARSING 

TOP DOWN PARSING: 

 Top-down parsing can be viewed as the problem of constructing a parse tree for the given 

input string, starting from the root and creating the nodes of the parse tree in preorder 

(depth-first left to right). 

 Equivalently, top-down parsing can be viewed as finding a leftmost derivation for an 

input string. 

It is classified in to two different variants namely; one which uses Back Tracking and the other is 

Non Back Tracking in nature. 

Non Back Tracking Parsing: There are two variants of this parser as given below. 

1. Table Driven Predictive Parsing : 

i. LL (1) Parsing 

2. Recursive Descent parsing 

Back Tracking 

1. Brute Force method 

NON BACK TRACKING: 

LL (1) Parsing or Predictive Parsing 

LL (1) stands for, left to right scan of input, uses a Left most derivation, and the parser 

takes 1 symbol as the look ahead symbol from the input in taking parsing action decision. 

A non recursive predictive parser can be built by maintaining a stack explicitly, rather than implicitly via 

recursive calls. The parser mimics a leftmost derivation.  

If w is the input that has been matched so far, then the stack holds a sequence of grammar symbols a such that 

 



The table-driven parser in the figure has 

 An input buffer that contains the string to be parsed followed by a $ Symbol, used to indicate end of input. 

 A stack, containing a sequence of grammar symbols with a $ at the bottom of the stack, which initially 

contains the start symbol of the grammar on top of $. 

 A parsing table containing the production rules to be applied. This is a two dimensional array M [Non 

terminal, Terminal]. 

 A parsing Algorithm that takes input String and determines if it is conformant to Grammar and it uses the 

parsing table and stack to take such decision. 

 

The Steps Involved In constructing an LL(1) Parser are: 

1. Write the Context Free grammar for given input String 

2. Check for Ambiguity. If ambiguous remove ambiguity from the grammar 

3. Check for Left Recursion. Remove left recursion if it exists. 

4. Check For Left Factoring. Perform left factoring if it contains common prefixes in 

more than one alternates. 

5. Compute FIRST and FOLLOW sets 

6. Construct LL(1) Table 

7. Using LL(1) Algorithm generate Parse tree as the Output 



Context Free Grammar (CFG): CFG used to describe or denote the syntax of the 

programming language constructs. The CFG is denoted as G, and defined using a four tuple 

notation. 

Let G be CFG, then G is written as, G= (V, T, P, S) 

Where 

 V is a finite set of Non terminal; Non terminals are syntactic variables that denote sets of 

strings. The sets of strings denoted by non terminals help define the language generated 

by the grammar. Non terminals impose a hierarchical structure on the language that 

is key to syntax analysis and translation. 

 T is a Finite set of Terminal; Terminals are the basic symbols from which strings are 

formed. The term "token name" is a synonym for '"terminal" and frequently we will use 

the word "token" for terminal when it is clear that we are talking about just the token 

name. We assume that the terminals are the first components of the tokens output by the 

lexical analyzer. 

 S is the Starting Symbol of the grammar, one non terminal is distinguished as the start 

symbol, and the set of strings it denotes is the language generated by the grammar. P 

is finite set of Productions; the productions of a grammar specify the manner in which the 

terminals and non terminals can be combined to form strings, each production is in α->β 

form, where α is a single non terminal, β is (VUT)*.Each production consists of: 

(a) A non terminal called the head or left side of the production; this 

production defines some of the strings denoted by the head. 

(b) The symbol ->. Some times: = has been used in place of the arrow. 

(c) A body or right side consisting of zero or more terminals and non-terminals. The components of the body 

describe one way in which strings of the non 

terminal at the head can be constructed. 

 Conventionally, the productions for the start symbol are listed first. 



 

Notational Conventions Used In Writing CFGs: 

To avoid always having to state that ―these are the terminals," "these are the non 

terminals," and so on, the following notational conventions for grammars will be used 

throughout our discussions. 

1. These symbols are terminals: 

(a) Lowercase letters early in the alphabet, such as a, b, e. 

(b) Operator symbols such as +, *, and so on. 

(c) Punctuation symbols such as parentheses, comma, and so on. 

(d) The digits 0, 1. . . 9. 

(e) Boldface strings such as id or if, each of which represents a single 

terminal symbol. 

2. These symbols are non terminals: 

(a) Uppercase letters early in the alphabet, such as A, B, C. 

(b) The letter S, which, when it appears, is usually the start symbol. 

(c) Lowercase, italic names such as expr or stmt. 

(d) When discussing programming constructs, uppercase letters may be used to represent 



Non terminals for the constructs. For example, non terminal for expressions, terms, 

and factors are often represented by E, T, and F, respectively. 

Using these conventions the grammar for the arithmetic expressions can be written as 

 

DERIVATIONS: 

The construction of a parse tree can be made precise by taking a derivational view, in 

which productions are treated as rewriting rules. Beginning with the start symbol, each rewriting 

step replaces a Non terminal by the body of one of its productions. This derivational view 

corresponds to the top-down construction of a parse tree as well as the bottom construction of the 

parse tree. 

 Derivations are classified in to Let most Derivation and Right Most Derivations. 

Left Most Derivation (LMD): 

It is the process of constructing the parse tree or accepting the given input string, in 

which at every time we need to rewrite the production rule it is done with left most non terminal 

only. 

Ex: - If the Grammar is E-> E+E | E*E | -E| (E) | id and the input string is id + id* id 

The production E -> - E signifies that if E denotes an expression, then – E must also denote an 

expression. The replacement of a single E by - E will be described by writing 

E => -E which is read as “E derives _E” 

For a general definition of derivation, consider a non terminal A in the middle of a 

sequence of grammar symbols, as in αAβ, where α and β are arbitrary strings of grammar 

symbol. Suppose A ->γ is a production. Then, we write αAβ => αγβ. The symbol => means 

"derives in one step". Often, we wish to say, "Derives in zero or more steps." For this purpose, 



we can use the symbol , If we wish to say, "Derives in one or more steps." We cn use 

the symbol . If S a, where S is the start symbol of a grammar G, we say that α is a 

sentential form of G. 

The Leftmost Derivation for the given input string id + id* id is 

E => E +E 

 

 

What is a Parse Tree? 

A parse tree is a graphical representation of a derivation that filters out the order in which 

productions are applied to replace non terminals. 

 Each interior node of a parse tree represents the application of a production. 

 All the interior nodes are Non terminals and all the leaf nodes terminals. 



 All the leaf nodes reading from the left to right will be the output of the parse tree. 

 If a node n is labeled X and has children n1,n2,n3,…nk with labels X1,X2,…Xk 

respectively, then there must be a production A->X1X2…Xk in the grammar. 

Example1:- Parse tree for the input string - (id + id) using the above Context free Grammar is 

 

The Following figure shows step by step construction of parse tree using CFG for the parse tree 

for the input string - (id + id). 

 



 

AMBIGUITY in CFGs: 

Definition: A grammar that produces more than one parse tree for some sentence (input string) 

is said to be ambiguous. 

In other words, an ambiguous grammar is one that produces more than one leftmost 

derivation or more than one rightmost derivation for the same sentence. 

Or If the right hand production of the grammar is having two non terminals which are 

exactly same as left hand side production Non terminal then it is said to an ambiguous grammar. 

Example : If the Grammar is E-> E+E | E*E | -E| (E) | id and the Input String is id + id* id 

Two parse trees for given input string are 



 

The above Grammar is giving two parse trees or two derivations for the given input string so, it 

is an ambiguous Grammar 

Note: LL (1) parser will not accept the ambiguous grammars or We cannot construct an 

LL(1) parser for the ambiguous grammars. Because such grammars may cause the Top 

Down parser to go into infinite loop or make it consume more time for parsing. If necessary 

we must remove all types of ambiguity from it and then construct. 

ELIMINATING AMBIGUITY: Since Ambiguous grammars may cause the top down Parser 

go into infinite loop, consume more time during parsing. 

Therefore, sometimes an ambiguous grammar can be rewritten to eliminate the ambiguity. The 

general form of ambiguous productions that cause ambiguity in grammars is 



 

 

LEFT RECURSION: 

Another feature of the CFGs which is not desirable to be used in top down parsers is left 

recursion. A grammar is left recursive if it has a non terminal A such that there is a derivation 



A=>Aα for some string α in (TUV)*. LL(1) or Top Down Parsers can not handle the Left 

Recursive grammars, so we need to remove the left recursion from the grammars before being 

used in Top Down Parsing. 

The General form of Left Recursion is: 

 

LEFT FACTORING: 

Left factoring is a grammar transformation that is useful for producing a grammar suitable for 

predictive or top-down parsing. A grammar in which more than one production has common 

prefix is to be rewritten by factoring out the prefixes. 

For example, in the following grammar there are n A productions have the common prefix α, 

which should be removed or factored out without changing the language defined for A. 



 

FIRST and FOLLOW: 

The construction of both top-down and bottom-up parsers is aided by two 

functions, 

FIRST and FOLLOW, associated with a grammar G. During top down parsing, 

FIRST and 

FOLLOW allow us to choose which production to apply, based on the next input 

(look a head) symbol. 

 



 

 

 



 

 

 



LL (1) Parsing Algorithm: 

The parser acts on basis on the basis of two symbols 

i. A, the symbol on the top of the stack 

ii. a, the current input symbol 

There are three conditions for A and ‗a‘, that are used fro the parsing program. 

1. If A=a=$ then parsing is Successful. 

2. If A=a≠$ then parser pops off the stack and advances the current input pointer to the 

next. 

3. If A is a Non terminal the parser consults the entry M [A, a] in the parsing table. If 

M[A, a] is a Production A-> X1X2..Xn, then the program replaces the A on the top of 

the Stack by X1X2..Xn in such a way that X1 comes on the top. 

STRING ACCEPTANCE BY PARSER: 

If the input string for the parser is id + id * id, the below table shows how the parser accept the string with the 

help of Stack. 

 



 

RECURSIVE DESCENT PARSING : 

 

A recursive-descent parsing program consists of a set of recursive procedures, one for 
each non terminal. Each procedure is responsible for parsing the constructs defined by 
its non terminal, Execution begins with the procedure for the start symbol, which halts 
and announces success if its procedure body scans the entire input string. 

If the given grammar is 

E TE′ 
E′ +TE′ | € 

T FT′ 

T′ *FT′ | € 

F (E) | id 

Reccursive procedures for the recursive descent parser for the given grammar are given 
below. 

procedure E( ) 
{ 

T( ); 
E′( ); 

} 



procedure T ( ) 
{ 

F( ); 
T′( ); 

} 
Procedure E′( ) 
{ 

if input = ‗+‘ 
{ 

advance( 
); T ( ); 
E′( ); 

return true; 
} 

else error; 
} 
procedure T′( ) 

{ 
if input = ‗*‘ 
{ 

advance( 
); F ( ); 

 

 



 
 

T′( ); 
return true; 
} 
else return error; 

} 
procedure F( ) 
{ 

if input = ‗(‗ 
{ 

advance( 
); E ( ); 
if input = ‗)‘ 
advance( 
); return 
true; 

} 
else if input =  ―idǁ 
{ 

 

advance( 
); return 
true; 

} 
else return error; 

} 
advance() 
{ 

input = next token; 
} 

BACK TRACKING: This parsing method uses the technique called Brute Force method 

during the parse tree construction process. This allows the process to go back (back track) and 
redo the steps by undoing the work done so far in the point of processing. 

Brute force method: It is a Top down Parsing technique, occurs when there 

is more than one alternative in the productions to be tried while parsing the input string. 
It selects alternatives in the order they appear and when it realizes that something 
gone wrong it tries with next alternative. 

For example, consider the grammar bellow. 

                 S cAd 

A ab | a 

To generate the input string ―cadǁ, initially the first parse tree given below is 
generated. As the string generated is not ―cadǁ, input pointer is back tracked to position 
―Aǁ, to examine the next  alternate  of  ―Aǁ.  Now  a  match  to  the  input string occurs  as  
shown  in  the  2nd  parse trees given below. 

 
 
 



 

 
 

 

 

( 1) ( 2 ) 

 
 
 
 
 
 

 



 

BOTTOM-UP PARSING 

 
Bottom-up parsing corresponds to the construction of a parse tree for an input 

string beginning at the leaves (the bottom nodes) and working up towards the root (the 

top node). It involves  ―reducing  an  input  string ‗w‘  to  the  Start  Symbol  of  the  

grammar.  in  each  reduction step, a perticular substring matching the right side of the 

production is replaced by symbol on the left of that production and it is the Right most 

derivation. For example consider the following Grammar: 

E E+T|T 

T T*F 

F (E)|id 

Bottom up parsing of the input string “id * id “is as follows: 
 
 

INPUT STRING SUB STRING REDUCING PRODUCTION 

id*id Id F->id 

F*id T F->T 

T*id Id F->id 

T*F * T->T*F 

T T*F E->T 

E 
 Start symbol. Hence, the input 

String is accepted 

Parse Tree representation is as follows: 
 

 
 

 
 

Figure 3.1 : A Bottom-up Parse tree for the input String “id*id” 
 
 
 
 
 
 
 



 
 
Bottom up parsing is classified in to 1. Shift-Reduce Parsing, 2. Operator Precedence 
parsing , and 3. [Table Driven] L R Parsing 

i. SLR( 1 ) 

ii. CALR ( 1 ) 

iii.LALR( 1 ) 

SHIFT-REDUCE PARSING: 

Shift-reduce parsing is a form of bottom-up parsing in which a stack holds 

grammar symbols and an input buffer holds the rest of the string to be parsed, We use 

$ to mark the bottom of the stack and also the right end of the input. And it makes use of 

the process of shift and reduce actions to accept the input string. Here, the parse tree is 

Constructed bottom up from the leaf nodes towards the root node. 

When we are parsing the given input string, if the match occurs the parser takes 

the reduce action otherwise it will go for shift action. And it can accept ambiguous 

grammars also. 

For example, consider the below grammar to accept the input string ―id * id―, using S-R parser 

E E+T|T 

T T*F | F 

F (E)|id 

Actions of the Shift-reduce parser using Stack implementation 
 

STACK INPUT ACTION 

$ Id*id$ Shift 

$id *id$ Reduce with F d 

$F *id$ Reduce with T F 

$T *id$ Shift 

$T* id$ Shift 

$T*id $ Reduce with F id 

$T*F $ Reduce with T T*F 

$T $ Reduce with E T 

$E $ Accept 

 
 

 



Department of Computer Science & Engineering Course File : Compiler Design 
 

 

 

Consider the following grammar: 

S aAcBe 

A Ab|b 

B d 

Let the input string is ―abbcdeǁ. The series of shift and reductions to the start 

symbol are as follows. 

abbcde aAbcde aAcde aAcBe S 

Note: in the above example there are two actions possible in the second Step, 

these are as follows : 

1. Shift action going to 3rd Step 

2. Reduce action, that is A->b 

If the parser is taking the 1st action then it can successfully accepts the given 

input string, if it is going for second action then it can‘t accept given input string. This is 

called shift reduce conflict. Where, S-R parser is not able take proper decision, so it not 

recommended for parsing. 

LR Parsing: 

 

Most prevalent type of bottom up parsing is LR (k) parsing. Where, L is left to right scan 
of the given input string, R is Right Most derivation in reverse and K is no of input 
symbols as the Look ahead. 

 It is the most general non back tracking shift reduce parsing method 

 The class of grammars that can be parsed using the LR methods is a proper 
superset of the class of grammars that can be parsed with predictive parsers. 

 An LR parser can detect a syntactic error as soon as it is possible to do so, 
on a left to right scan of the input. 
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LR Parser Consists of 

 An input buffer that contains the string to be parsed followed by a $ Symbol, 

used to indicate end of input. 

 A stack containing a sequence of grammar symbols with a $ at the bottom of 

the stack, which initially contains the Initial state of the parsing table on top of 

$. 

 A parsing table (M), it is a two dimensional array M[ state, terminal or Non 

terminal] and it contains two parts 

1. ACTION Part 
The ACTION part of the table is a two dimensional array indexed by state 
and the input symbol, i.e. ACTION[state][input], An action table entry can 

have one of following four kinds of values in it. They are: 

1. Shift X, where X is a State number. 
2. Reduce X, where X is a Production number. 
3. Accept, signifying the completion of a successful parse. 
4. Error entry. 

2. GO TO Part 
The GO TO part of the table is a two dimensional array indexed by state 
and a Non terminal, i.e. GOTO[state][NonTerminal]. A GO TO entry has a 
state number in the table. 

 A parsing Algorithm uses the current State X, the next input symbol ‗a‘ to 

consult the entry at action[X][a]. it makes one of the four following actions as 

given below: 

1. If the action[X][a]=shift Y, the parser executes a shift of Y on to the top of the stack 

and advances the input pointer. 

2. If the action[X][a]= reduce Y (Y is the production number reduced in the State X), if 

the production is Y->β, then the parser pops 2*β symbols from the stack and push Y 

on to the Stack. 

3. If the action[X][a]= accept, then the parsing is successful and the input string is 

accepted. 

4. If the action[X][a]= error, then the parser has discovered an error and calls the error 
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routine. 

The parsing is classified in to 

1. LR ( 0 ) 
 

2. Simple LR ( 1 ) 
 

3. Canonical LR ( 1 ) 
 

4. Look ahead LR ( 1 ) 
 

LR (1) Parsing: Various steps involved in the LR (1) Parsing: 

1. Write the Context free Grammar for the given input string 

2. Check for the Ambiguity 
3. Add Augment production 

4. Create Canonical collection of LR ( 0 ) items 

5. Draw DFA 

6. Construct the LR ( 0 ) Parsing table 

7. Based on the information from the Table, with help of Stack and Parsing algorithm 

generate the output. 

Augment Grammar 

The Augment Grammar G`, is G with a new starting symbol S` an additional production S` S. this helps 

the parser to identify when to stop the parsing and announce the acceptance of the input. The input string 

is accepted if and only if the parser is about to reduce by S` S. For example let us consider the Grammar 

below: 
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Closure operation 

If I is an initial State, then the Closure (I) is constructed as follows: 

1. Initially, add Augment Production to the state and check for the • symbol in the 

Right hand side production, if the • is followed by a Non terminal then Add 

Productions which are Stating with that Non Terminal in the State I. 

 

The 1st and 2nd productions are satisfies the 2nd rule. So, add 

productions which are starting with E and T in I0 

Note: once productions are added in the state the same 

production should not added for the 2nd time in the same state.So, 
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the state becomes 

 

 

 

GO TO Operation 

Go to (I0, X), where I0 is set of items and X is the grammar Symbol on 

which we are moving the „•‟ symbol. It is like finding the next state of the NFA for a 

give State I0 and the input symbol is X. For example, if the production is E •E+T 

 

Construction of LR (0) parsing Table: 

Once we have Created the canonical collection of LR (0) items, need to follow 

the steps mentioned below: 

If there is a transaction from one state (Ii ) to another state(Ij ) on a terminal 

value then, we should write the shift entry in the action part as shown below:
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1 If there is one state (Ii), where there is one production   (A->αβ•)   which has no 

transitions to the next State. Then, the production is said to be a reduced 

production. For all terminals X in FOLLOW (A), write the reduce entry along with 

their production numbers. If the Augment production is reducing then write 

accept. 

1 S -> •aAb 

2 A->αβ• 
Follow(S) = {$} 

Follow (A) = (b} 

 
 

 

Ii 

 
 

 
SLR ( 1 ) table for the Grammar 

2 A->αβ• 

Ii 

States ACTION GO TO 

a b $ S A 

Ii 
 

r2 
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S aB 

B bB | b 

 

Follow (S) = {$}, Follow (B) = {$} 
 
 

States 
ACTION GOTO 

A b $ S B 

I0 S2   1  

I1   ACCEPT   

I2  S4   3 

I3   R1   

I4  S4 R3  5 

 

 
Note: When Multiple Entries occurs in the SLR table. Then, the grammar is not 

accepted by SLR(1) Parser. 

Canonical LR (1) Parsing: Various steps involved in the CLR (1) Parsing: 

1. Write the Context free Grammar for the given input string 

2. Check for the Ambiguity 
 

3. Add Augment productio 
4. Create Canonical collection of LR ( 1 ) items 

 

5. Draw DFA 
 

6. Construct the CLR ( 1 ) Parsing table 
 

7. Based on the information from the Table, with help of Stack and 

Parsing algorithm generate the output. 
 

 

 

 

LR (1) items : 

The LR (1) item is defined by production, position of data and a terminal symbol. The 

terminal is called as Look ahead symbol. 

General form of LR (1) item is 

 

I5   R2   

S->α•Aβ , $ 

A-> •γ, FIRST(β,$) 
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Rules to create canonical collection: 

1. Every element of I is added to closure of I 

2. If an LR (1) item [X-> A•BC, a] exists in I, and there exists a production B->b1b2….., 

then add item [B->• b1b2, z] where z is a terminal in FIRST(Ca), if it is not already in 

Closure(I).keep applying this rule until there are no more elements adde. 

For example, if the grammar is 

S->CC C->cC C-

>d 

The Canonical collection of LR (1) items can be created as follows: 

0. S′->•S (Augment Production) 

1. S->•CC 

2. C->•cC 

3. C->•d 

I0 State : Add Augment production and compute the Closure, the look ahead symbol for the Augment 

Production is $. 

 

S′->•S, $= Closure(S′->•S, $) 

The dot symbol is followed by a Non terminal S. So, add productions starting with S in I0 

State. 

 

S->•CC, FIRST ($), using 2nd rule 

S->•CC, $ 
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The dot symbol is followed by a Non terminal C. So, add productions starting with C in I0 

State. 

 

C->•cC, FIRST(C, $) 

C->•d, FIRST(C, $) 

FIRST(C) = {c, d} so, the items are 
 

C->•cC, c/d 

C->•d, c/d 

The dot symbol is followed by a terminal value. So, close the I0 State. So, the productions in the 

I0 are 

 

S′->•S , $ 

S->•CC , $ 

C->•cC, c/d 

C->•d , c/d 

I1 = Goto ( I0, S)= S′->S•,$ 

I2 = Go to (I0 , C)= Closure( S-> C•C, $) 

S-> C->•cC , $ 

C->•d,$ So, the I2 State is 

S->C•C,$ 

C->•cC , $ 

C->•d,$ 

I3= Goto(I0,c)= Closure( C->c•C, c/d) 

C->•cC, c/d 

C->•d , c/d So, the I3 State is 

C->c•C, c/d 

C->•cC, c/d 

C->•d , c/d 

I4= Goto( I0, d)= Colsure( C->d•, c/d) = C->d•, c/d I5 

= Goto ( I2, C)= closure(S->CC•,$)= S->CC•, $ 

I6= Goto ( I2, c)= closure(C->c•C , $)= 

C->•cC, $ 

C->•d , $ S0, the I6 State is 
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S′->S•,$ 
S->CC•, $ 

S I1 C I5 C->cC• , $ 

C 

0 S′->•S , $ 

1 S->•CC , $ 

2C->•cC,c/d 

3 C->•d ,c/d 

C 

S->C•C,$ 

C->•cC , $ 

C->•d,$ 

c 

C->c•C , $ 

C->•cC , $ 

C->•d,$ 

I9 

c 

d I6 

I2 I6 I7 

I0 

d 

c d 

C->d•, c/d 

I4 

C->c•C, c/d 

C->•cC, c/d 

C->•d , c/d 

C 

C->d•, $ 

I7 

d I3 c 

I4 I3 
C->cC•, c/d 

I8 

 

C->c•C , $ 

C->•cC , $ 

C->•d,$ 

I7 = Go to (I2 , d)= Closure(C->d•,$ ) = C->d•, $ 

Goto(I3, c)= closure(C->•cC, c/d)= I3. 

I8= Go to (I3 , C)= Closure(C->cC•, c/d) = C->cC•, c/d 

Go to (I3 , c)= Closure(C->c•C, c/d) = I3 

Go to (I3 , d)= Closure(C->d•, c/d) = I4 

I9= Go to (I6 , C)= Closure(C->cC• , $) = C->cC• , $ 

Go to (I6 , c)= Closure(C->c•C , $) = I6 

Go to (I6 , d)= Closure(C->d•,$ ) = I7 

Drawing the Finite State Machine DFA for the above LR (1) items 
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Construction of CLR (1) Table 

Rule1: if there is an item [A->α•Xβ,b] in Ii and goto(Ii,X) is in Ij then action [Ii][X]= 

Shift j, Where X is Terminal. 

Rule2: if there is an item [A->α•, b] in Ii and (A≠S`) set action [Ii][b]= reduce 

along with the production number. 

Rule3: if there is an item [S`->S•, $] in Ii then set action [Ii][$]= Accept. 

Rule4: if there is an item [A->α•Xβ,b] in Ii and go to(Ii,X) is in Ij then goto 

[Ii][X]= j, Where X is Non Terminal. 

 

States 
ACTION GOTO 

c d $ S C 

I0 S3 S4  1 2 

I1   ACCEPT   

I2 S6 S7   5 

I3 S3 S4   8 

I4 R3 R3   5 

I5   R1   

I6 S6 S7   9 

I7   R3   

I8 R2 R2    

I9   R2   

Table : LR (1) Table 

 

LALR (1) Parsing 

The CLR Parser avoids the conflicts in the parse table. But it produces more 

number of States when compared to SLR parser. Hence more space is occupied by the 

table in the memory. So LALR parsing can be used. Here, the tables obtained are 

smaller than CLR parse table. But it also as efficient as CLR parser. Here LR (1) items 

that have same productions but different look- aheads are combined to form a single set 

of it 

ems. 

For example, consider the grammar in the previous example. Consider the 

states I4 and I7 as given below: 

I4= Goto( I0, d)= Colsure( C->d•, c/d) = C->d•, c/d I7 

= Go to (I2 , d)= Closure(C->d•,$ ) = C->d•, $ 

These states are differing only in the look-aheads. They have the same productions. 

Hence these states are combined to form a single state called as I47. 
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Similarly the states I3 and I6 differing only in their look-aheads as given below: 

I3= Goto(I0,c)= 
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C->c•C, c/d 

C->•cC, c/d 

C->•d , c/d 

I6= Goto ( I2, c)= 

C->c•C , $ 

C->•cC , $ 

C->•d,$ 

These states are differing only in the look-aheads. They have the same productions. 
Hence these states are combined to form a single state called as I36. 

Similarly the States I8 and I9 differing only in look-aheads. Hence they combined 
to form the state I89. 

 

States 
ACTION GOTO 

c d $ S C 

I0 S36 S47  1 2 

I1   ACCEPT   

I2 S36 S47   5 
I36 S36 S47   89 
I47 R3 R3 R3  5 

I5   R1   

I89 R2 R2 R2   

 
Table: LALR Table 

Conflicts in the CLR (1) Parsing : When multiple entries occur in the table. Then, the 

situation is said to be a Conflict. 

Shift-Reduce Conflict in CLR (1) Parsing 

Shift Reduce Conflict in the CLR (1) parsing occurs when a state has 

3. A Reduced item of the form A α•, a and 

4. An incomplete item of the form A β•aα as shown below: 

 
 
 

 
Ij 

 

 
Ii 

1 A-> β•a α , $ 

a 
2 B->b• ,a 

States Action GOTO 

a $ A B 
 

Ii 
 

Sj/r2 
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1 A-> α• ,a 

 

2 B->β•,a 

 

 

Reduce / Reduce Conflict in CLR (1) Parsing 

Reduce- Reduce Conflict in the CLR (1) parsing occurs when a state has two 

or more reduced items of the form 

3. A α• 

4. B β• If two productions in a state (I) reducing on same look ahead symbol 

as shown below: 
 

 

Ii 

String Acceptance using LR Parsing: 

Consider the above example, if the input String is cdd 
 

States 
ACTION GOTO 

c D $ S C 

I0 S3 S4  1 2 

I1   ACCEPT   

I2 S6 S7   5 

I3 S3 S4   8 

I4 R3 R3   5 

I5   R1   

I6 S6 S7   9 

I7   R3   

I8 R2 R2    

I9   R2   

 
0 S′->•S (Augment Production) 

1 S->•CC 

2 C->•cC 

3 C->•d 

 
STACK 

 
INPUT 

 
ACTION 

$0 cdd$ Shift S3 

$0c3 dd$ Shift S4 

$0c3d4 d$ Reduce with R3,C->d, pop 2*β symbols from the stack 
$0c3C d$ Goto ( I3, C)=8Shift S6 

$0c3C8 d$ Reduce with R2 ,C->cC, pop 2*β symbols from the stack 
$0C d$ Goto ( I0, C)=2 

$0C2 d$ Shift S7 

States Action GOTO 

a $ A B 
 

Ii 
 

r1/r2 
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 $0C2d7 $ Reduce with R3,C->d, pop 2*β symbols from the stack 
$0C2C $ Goto ( I2, C)=5 

$0C2C5 $ Reduce with R1,S->CC, pop 2*β symbols from the stack 
$0S $ Goto ( I0, S)=1 

$0S1 $ Accept 
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     UNIT-IV 

 Syntax Directed Translation and Intermediate code Generator 

 

In Intermediate code generation we use syntax directed methods to translate the 
source program into an intermediate form programming language constructs such as 
declarations, assignments and flow-of-control statements. 

 

 

 

 

Figure 4.1 : Intermediate Code Generator 

Intermediate code is: 
 

 The output of the Parser and the input to the Code Generator. 
 Relatively machine-independent and allows the compiler to be retargeted. 
 Relatively easy to manipulate (optimize). 

 

What are the Advantages of an intermediate language? 

 

Advantages of Using an Intermediate Language includes : 
 

1. Retargeting is facilitated - Build a compiler for a new machine by attaching a new code 

generator to an existing front-end. 

2. Optimization - reuse intermediate code optimizers in compilers for different 

languages and different machines. 

Note: the terms ―intermediate codeǁ, ―intermediate languageǁ, and 

―intermediate representationǁ are all used interchangeably. 

Types of Intermediate representations / forms: There are three types of 

intermediate representation:- 

 

1. Syntax Trees 
 

2. Postfix notation 
 

3. Three Address Code 
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Semantic rules for generating three-address code from common programming 
language constructs are similar to those for constructing syntax trees of for generating 
postfix notation. 



Department of Computer Science & Engineering Course File : Compiler Design 
 

 

 
 

Graphical Representations 

 
A syntax tree depicts the natural hierarchical structure of a source program. A 

DAG (Directed Acyclic Graph) gives the same information but in a more compact way 

because common sub-expressions are identified. A syntax tree for the assignment 

statement a:=b*-c+b*-c appear in the following figure. 

 
. assign 

a + 
 

* * 

 
b uniminus b uniminus 

 
 

c c 

 

Figure 4.2 : Abstract Syntax Tree for the statement a:=b*-c+b*-c 

 
Postfix notation is a linearized representation of a syntax tree; it is a list of the nodes of 

the in which a node appears immediately after its children. The postfix notation for the 

syntax tree in the fig is 

 

a b c uminus + b c uminus * + assign 

 
The edges in a syntax tree do not appear explicitly in postfix notation. They can 

be recovered in the order in which the nodes appear and the no. of operands that the 

operator at a node expects. The recovery of edges is similar to the evaluation, using a 

staff, of an expression in postfix notation. 

 
What is Three Address Code? 

 
Three-address code is a sequence of statements of the general form : X := Y Op Z 

 
where x, y, and z are names, constants, or compiler-generated temporaries; op 

stands for any operator, such as a fixed- or floating-point arithmetic operator, or a logical 

operator on Boolean-valued data. Note that no built-up arithmetic expressions are 

permitted, as there is only one operator on the right side of a statement. Thus a source 

language expression like x+y*z might be translated into a sequence 



Department of Computer Science & Engineering Course File : Compiler Design 
 

 

 
 

t1 := y * z 
t2 : = x + 
t1 

Where t1 and t2 are compiler-generated temporary names. This unraveling of 

complicated arithmetic expressions and of nested flow-of-control statements makes 

three-address code desirable for target code generation and optimization. The use of 

names for the intermediate values computed by a program allow- three-address code to 

be easily rearranged – unlike postfix notation. Three - address code is a linearzed 

representation of a syntax tree or a dag in which explicit names correspond to the 

interior nodes of the graph. 

Intermediate code using Syntax for the above arithmetic 

expression t1 := -c 

t2 := b * t1 
t3 := -c 
t4 := b * t3 
t5 := t2 + 
t4 a := t5 

The reason for the termǁthree-address codeǁ is that each statement usually 

contains three addresses, two for the operands and one for the result. In the 

implementations of three-address code given later in this section, a programmer-defined 

name is replaced by a pointer tc a symbol- table entry for that name. 

 
Types of Three-Address Statements 

 

Three-address statements are akin to assembly code. Statements can have 

symbolic labels and there are statements for flow of control. A symbolic label represents 

the index of a three- address statement in the array holding inter- mediate code. Actual 

indices can be substituted for the labels either by making a separate pass, or by using 

ǁback patching,ǁ discussed in Section 

8.6. Here are the common three-address statements used in the remainder of this book: 

 
1. Assignment statements of the form x: = y op z, where op is a binary arithmetic or logical 

operation. 

 
2. Assignment instructions of the form x:= op y, where op is a unary operation. Essential unary 

operations include unary minus, logical negation, shift operators, and conversion operators 

that, for example, convert a fixed-point number to a floating-point number. 

 

3. Copy statements of the form x: = y where the value of y is assigned to x. 

 
4. The unconditional jump goto L. The three-address statement with label L is the next to be 

executed. 
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5. Conditional jumps such as if x relop y goto L. This instruction applies a relational operator (<, 

=, >=, etc.) to x and y, and executes the statement with label L next if x stands in relation relop 

to y. If not, the three-address statement following if x relop y goto L is executed next, as in the 

usual sequence. 

 

6. param x and call p, n for procedure calls and return y, where y representing a returned value 

is optional. Their typical use is as the sequence of three-address statements 

 
param 

x1 

param 

x2 

param 

xn call p, 

n 

Generated as part of a call of the procedure p(x,, x~,..., xǁ). The integer n indicating 

the number of actual parameters in ǁcall p, nǁ is not redundant because calls can be 

nested. The implementation of procedure calls is outline d in Section 8.7. 

 

7. Indexed assignments of the form x: = y[ i ] and x [ i ]: = y. The first of these sets x to the value 

in the location i memory units beyond location y. The statement x[i]:=y sets the contents of the 

location i units beyond x to the value of y. In both these instructions, x, y, and i refer to data 

objects. 

 

8. Address and pointer assignments of the form x:= &y, x:= *y and *x: = y. The first of these 

sets the value of x to be the location of y. Presumably y is a name, perhaps a temporary, that 

denotes an expression with an I-value such as A[i, j], and x is a pointer name or temporary. That 

is, the r-value of x is the l-value (location) of some object!. In the statement x: = ~y, 

presumably y is a pointer or a temporary whose r- value is a location. The r-value of x is made 

equal to the contents of that location. Finally, +x: = y sets the r-value of the object pointed to by 

x to the r- value of y. 

 
The choice of allowable operators is an important issue in the design of an 

intermediate form. The operator set must clearly be rich enough to implement the 

operations in the source language. A small operator set is easier to implement on a new 

target machine. However, a restricted instruction set may force the front end to generate 

long sequences of statements for some source, language operations. The optimizer and 

code generator may then have to work harder if good code is to be generated. 

 

SYNTAX DIRECTED TRANSLATION OF THREE ADDRESS CODE 
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When three-address code is generated, temporary names are made up for the 
interior nodes of a syntax tree. The value of non- 
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computed into a new temporary t. In general, the three- address code for id: = E 
consists of code to evaluate E into some temporary t, followed by the assignment 
id.place: = t. If an expression is a single identifier, say y, then y itself holds the value of 
the expression. For the moment, we create a new name every time a temporary is 
needed; techniques for reusing temporaries are given in Section S.3. The S-attributed 
definition in Fig. 8.6 generates three-address code for assignment statements. Given 
input a: = b+ – c + b+ – c, it produces the code in Fig. 8.5(a). The synthesized attribute 
S.code represents the three- address code for the assignment S. The non- terminal E 
has two attributes: 

 

1. E.place, the name that will hold the value of E, and 
 

2. E.code, the sequence of three-address statements evaluating E. 
 

The function newtemp returns a sequence of distinct names t1, t2,... in response 

to successive calls. For convenience, we use the notation gen(x ‘: =‘ y ‘+‘ z) in Fig. 8.6 

to represent the three-address statement x: = y + z. Expressions appearing instead of 

variables like x, y, and z are evaluated when passed to gen, and quoted operators or 

operands, like ‘+‘, are taken literally. In practice, three- address statements might be 

sent to an output file, rather than built up into the code attributes. Flow-of-control 

statements can be added to the language of assignments in Fig. 

8.6 by productions and semantic rules )like the ones for while statements in Fig. 8.7. In 

the figure, the code for S - while E do S, is generated using‘ new attributes S.begin and 

S.after to mark the first statement in the code for E and the statement following the code 

for S, respectively. 

 

 
These attributes represent labels created by a function new label that returns a 

new label every time it is called. 
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 op Arg1 Arg2 Result 

(0) uminus c  t1 

(1) * b t1 t2 

(2) uminus c  t3 

(3) * b t3 t4 

(4) + t2 t4 t5 

(5) := t5  A 

 

 op Arg1 Arg2 

(0) uminus C  

(1) * B (0) 

(2) uminus C  

(3) * B (2) 

(4) + (1) (3) 

(5) := A (4) 

 

 
 

IMPLEMENTATIONS OF THREE-ADDRESS STATEMENTS: 

 
A three-address statement is an abstract form of intermediate code. In a 

compiler, these statements can be implemented as records with fields for the operator 

and the operands. Three such representations are quadruples, triples, and indirect 

triples. 

 

QUADRUPLES: 

 
A quadruple is a record structure with four fields, which we call op, arg l, arg 2, 

and result. The op field contains an internal code for the operator. The three-address 

statement x:= y op z is represented by placing y in arg 1. z in arg 2. and x in result. 

Statements with unary operators like x: = – y or x: = y do not use arg 2. Operators like 

param   use neither arg2 nor result. Conditional and unconditional jumps put the target 

label in result. The quadruples in Fig. H.S(a) are for the assignment a: = b+ – c + b i – c. 

They are obtained from the three-address code 

.The contents of fields arg 1, arg 2, and result are normally pointers to the symbol-table 

entries for the names represented by these fields. If so, temporary names must be 

entered into the symbol table as they are created. 

 

TRIPLES: 

 

To avoid entering temporary names into the symbol table. We might refer to a 

temporary value bi the position of the statement that computes it. If we do so, three-

address statements can be represented by records with only three fields: op, arg 1 and 

arg2, as Shown below. The fields arg l and arg2, for the arguments of op, are either 

pointers to the symbol table (for programmer- defined names or constants) or pointers 

into the triple structure (for temporary values). Since three fields are used, this 

intermediate code format is known as triples.‘ Except for the treatment of programmer-

defined names, triples correspond to the representation of a syntax tree or dag by an 

array of nodes, as in 

 

Table 8.8 (a) : Qudraples Table8.8(b) : Triples :Triples 

 
Parenthesized numbers represent pointers into the triple structure, while 

symbol-table pointers are represented by the names themselves. In practice, the 
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information needed to interpret the different kinds of entries in the arg 1 and arg2 fields 

can be encoded into the op field or some additional fields. The triples in Fig. 8.8(b) 

correspond to the quadruples in Fig. 8.8(a). Note that 
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the copy statement a:= t5 is encoded in the triple representation by placing a in the arg 

1 field and using the operator assign. A ternary operation like x[ i ]: = y requires two 

entries in the triple structure, as shown in Fig. 8.9(a), while x: = y[i] is naturally 

represented as two operations in Fig. 8.9(b). 

 

 

Indirect Triples 

 
Another implementation of three-address code that has been considered is that 

of listing pointers to triples, rather than listing the triples themselves. This 

implementation is naturally called indirect triples. For example, let us use an array 

statement to list pointers to triples in the desired order. Then the triples in Fig. 8.8(b) 

might be represented as in Fig. 8.10. 

 
 

 

 
Figure 8.10 : Indirect Triples SEMANTIC 

ANALYSIS : This phase focuses mainly on the 

. Checking the semantics , 

. Error reporting 

. Disambiguate overloaded operators 

. Type coercion , 

. Static checking 
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- Type checking 

-Control flow checking 

- Uniqueness checking 

- Name checking aspects of translation 

 
Assume that the program has been verified to be syntactically correct and 

converted into some kind of intermediate representation (a parse tree). One now has 
parse tree available. The next phase will be semantic analysis of the generated parse 
tree. Semantic analysis also includes error reporting in case any semantic error is found 
out. 

 
Semantic analysis is a pass by a compiler that adds semantic information to the 

parse tree and performs certain checks based on this information. It logically follows the 
parsing phase, in which the parse tree is generated, and logically precedes the code 
generation phase, in which (intermediate/target) code is generated. (In a compiler 
implementation, it may be possible to fold different phases into one pass.) Typical 
examples of semantic information that is added and checked is typing information ( type 
checking ) and the binding of variables and function names to their definitions ( object 
binding ). Sometimes also some early code optimization is done in this phase. For this 
phase the compiler usually maintains symbol tables in which it stores what each symbol 
(variable names, function names, etc.) refers to. 

 

FOLLOWING THINGS ARE DONE IN SEMANTIC ANALYSIS: 

 
Disambiguate Overloaded operators: If an operator is overloaded, one would like to 
specify the meaning of that particular operator because from one will go into code 
generation phase next. 

 
TYPE CHECKING: The process of verifying and enforcing the constraints of types is 
called type checking. This may occur either at compile-time (a static check) or run-time 
(a dynamic check). Static type checking is a primary task of the semantic analysis 
carried out by a compiler. If type rules are enforced strongly (that is, generally allowing 
only those automatic type conversions which do not lose information), the process is 
called strongly typed, if not, weakly typed. 

 

UNIQUENESS CHECKING: Whether a variable name is unique or not, in the its scope. 

 
Type coersion: If some kind of mixing of types is allowed. Done in languages which 

are not strongly typed. This can be done dynamically as well as statically. 
 

NAME CHECKS: Check whether any variable has a name which is not allowed. Ex. 
Name is same as an identifier (Ex. int in java). 

 
 Parser cannot catch all the program errors 
 There is a level of correctness that is deeper than syntax analysis 
 Some language features cannot be modeled using context free grammar formalism 

http://en.wikipedia.org/wiki/Type_checking
http://en.wikipedia.org/wiki/Type_checking
http://en.wikipedia.org/wiki/Object_binding
http://en.wikipedia.org/wiki/Object_binding
http://en.wikipedia.org/wiki/Compile-time
http://en.wikipedia.org/wiki/Run-time
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- Whether an identifier has been declared before use, this problem is of identifying a language 
{w α w | w ε Σ *} 

 

- This language is not context free 
 

A parser has its own limitations in catching program errors related to semantics, 
something that is deeper than syntax analysis. Typical features of semantic analysis 
cannot be modeled using context free grammar formalism. If one tries to incorporate 
those features in the definition of a language then that language doesn't remain context 
free anymore. 

Example: in 

string x; int 

y; 
y = x + 3      the use of x is a type 
error int a, b; 
a = b + c        c is not declared 

 
An identifier may refer to different variables in different parts of the program . An 
identifier may be usable in one part of the program but not another These are a couple 
of examples which tell us that typically what a compiler has to do beyond syntax 
analysis. The third point can be explained like this: An identifier x can be declared in 
two separate functions in the program, once of the type int and then of the type char. 
Hence the same identifier will have to be bound to these two different properties in the 
two different contexts. The fourth point can be explained in this manner: A variable 
declared within one function cannot be used within the scope of the definition of the 
other function unless declared there separately. This is just an example. Probably you 
can think of many more examples in which a variable declared in one scope cannot be 
used in another scope. 

 

ABSTRACT SYNTAX TREE: Is nothing but the condensed form of a parse tree, It is 

 

 Useful for representing language constructs so naturally. 

 The production S if B then s1 else s2 may appear as 
 
 

 
In the next few slides we will see how abstract syntax trees can be constructed from 
syntax directed definitions. Abstract syntax trees are condensed form of parse trees. 
Normally operators and keywords appear as leaves but in an abstract syntax tree they 
are associated with the interior nodes that would be the parent of those leaves in the 
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parse tree. This is clearly indicated by the examples in these slides. 
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Chain of single productions may be collapsed, and operators move to the parent nodes 
 

 

Chain of single productions are collapsed into one node with the operators moving up 
to become the node. 

 
CONSTRUCTING ABSTRACT SYNTAX TREE FOR EXPRESSIONS: 

 

In constructing the Syntax Tree, we follow the convention that : 
 

. Each node of the tree can be represented as a record consisting of at least two 
fields to store operators and operands. 

.operators : one field for operator, remaining fields ptrs to operands mknode( op,left,right ) 

.identifier : one field with label id and another ptr to symbol table mkleaf(id, id.entry) 

.number : one field with label num and another to keep the value of the number 

mkleaf(num,val) 
 

Each node in an abstract syntax tree can be implemented as a record with several 
fields. In the node for an operator one field identifies the operator (called the label of the 
node) and the remaining contain pointers to the nodes for operands. Nodes of an 
abstract syntax tree may have additional fields to hold values (or pointers to values) of 
attributes attached to the node. The functions given in the slide are used to create the 
nodes of abstract syntax trees for expressions. Each function returns a pointer to a 
newly created note. 

For Example: the 

following sequence of 

function 

calls creates a 

parse tree for w= a- 

4 + c 
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P 1 = mkleaf(id, entry.a) P 2 = 

mkleaf(num, 4) 

P 3 = mknode(-, P 1 , P 2 ) P 

4 = mkleaf(id, entry.c) 
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P 5 = mknode(+, P 3 , P 4 ) 

 
An example showing the formation of an abstract syntax tree by the given function calls 
for the expression a-4+c.The call sequence can be defined based on its postfix form, 
which is explained blow. 

 
A- Write the postfix equivalent of the expression for which we want to construct a 

syntax tree For above string w=a-4+c, it is a4-c+ 

B- Call the functions in the sequence, as defined by the sequence in the postfix 
expression which results in the desired tree. In the case above, call mkleaf() for a, 
mkleaf() for 4, mknode() for 
-, mkleaf() for c , and mknode() for + at last. 

 
1. P1 = mkleaf(id, a.entry) : A leaf node made for the identifier a, and an entry for a is made 
in the symbol table. 

 

2. P2 = mkleaf(num,4) : A leaf node made for the number 4, and entry for its value. 
 

3. P3 = mknode(-,P1,P2) : An internal node for the -, takes the pointer to previously made 
nodes P1, P2 as arguments and represents the expression a-4. 

 

4. P4 = mkleaf(id, c.entry) : A leaf node made for the identifier c , and an entry for c.entry 
made in the symbol table. 

 

5. P5 = mknode(+,P3,P4) : An internal node for the + , takes the pointer to previously 
made nodes P3,P4 as arguments and represents the expression a- 4+c . 

 
Following is the syntax directed definition for constructing syntax tree above 

 
E       E 1 + T E.ptr = mknode(+, E1 .ptr, T.ptr) 

E T E.ptr = T.ptr 

T T 1 * F T.ptr := mknode(*, T1 .ptr, F.ptr) 

T F T.ptr := F.ptr 

F (E) F.ptr := E.ptr 

F id F.ptr := mkleaf(id, id.entry) 

F num F.ptr := mkleaf(num, val) 

 
Now we have the syntax directed definitions to construct the parse tree for a given 
grammar. All the rules mentioned in slide 29 are taken care of and an abstract syntax 
tree is formed. 
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ATTRIBUTE GRAMMARS: A CFG G=(V,T,P,S), is called an Attributed Grammar iff , where in 
G, each grammar symbol XƐ VUT, has an associated set of attributes, and each production, p 
ƐP, is associated with a set of attribute evaluation rules called Semantic Actions. 
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In an AG, the values of attributes at a parse tree node are computed by semantic 
rules. There are two different specifications of AGs used by the Semantic Analyzer in 
evaluating the semantics of the program constructs. They are, 

 
- Syntax directed definition(SDD)s 

o High level specifications 
o Hides implementation details 
o Explicit order of evaluation is not specified 

- Syntax directed Translation schemes(SDT)s 

 Nothing but an SDD, which indicates order in which semantic rules 
are to be evaluated and 

 Allow some implementation details to be shown. 
An attribute grammar is the formal expression of the syntax-derived semantic 

checks associated with a grammar. It represents the rules of a language not explicitly 
imparted by the syntax. In a practical way, it defines the information that is needed in 
the abstract syntax tree in order to successfully perform semantic analysis. This 
information is stored as attributes of the nodes of the abstract syntax tree. The values of 
those attributes are calculated by semantic rule. 

 
There are two ways for writing attributes: 

 

1) Syntax Directed Definition(SDD): Is a context free grammar in which a set of semantic 
actions are embedded (associated) with each production of G. 

 
It is a high level specification in which implementation details are hidden, e.g., 

S.sys = A.sys + B.sys; 
 

/* does not give any implementation details. It just tells us. This kind of attribute 
equation we will be using, Details like at what point of time is it evaluated and in what 
manner are hidden from the programmer.*/ 

 
E E1 + T { E.val = E1 .val+ E2.val } 

E T { E.val = T.val } 

T T 1 * F { T.val = T1 .val+ F.val) 

T F { T.val = F.val } 

F (E) { F.val = E.val } 

F id { F.val = id.lexval } 

F num { F.val = num.lexval } 

 
2) Syntax directed Translation(SDT) scheme: Sometimes we want to control the way the 
attributes are evaluated, the order and place where they are evaluated. This is of a slightly 
lower level. 

 
An SDT is an SDD in which semantic actions can be placed at any position in the 
body of the production. 
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For example , following SDT prints the prefix equivalent of an arithmetic expression consisting 
a 
+ and * operators. 

 

L En{ printf(„E.val‟) } 

E { printf(„+‟) }E1 + T E

 T 

T { printf(„*‟) }T 1 * F T

 F 

F (E) 

F { printf(„id.lexval‟) }id 

F { printf(„num.lexval‟) } num 

 

This action in an SDT, is executed as soon as its node in the parse tree is visited in 
a preorder traversal of the tree. 

 
Conceptually both the SDD and SDT schemes will: 

 Parse input token stream 

 Build parse tree 

 Traverse the parse tree to evaluate the semantic rules at the parse 

tree nodes Evaluation may: 

 Generate code 

 Save information in the symbol table 

 Issue error messages 

 Perform any other activity 

 
To avoid repeated traversal of the parse tree, actions are taken simultaneously when 
a token is found. So calculation of attributes goes along with the construction of the 
parse tree. 

 
Along with the evaluation of the semantic rules the compiler may simultaneously 
generate code, save the information in the symbol table, and/or issue error messages 
etc. at the same time while building the parse tree. 

 
This saves multiple passes of the parse 

tree. Example 

Number  sign 

list sign + | - 

list list bit | bit 

bit 0 | 1 

 
Build attribute grammar that annotates Number with the value it represents 
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. Associate attributes with grammar symbols 
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symbol attributes 

Number value 

sign negative 

list position, value 

bit position, value 

production Attribute rule number sign 

list list.position 0 

 

if sign.negative 

 
then number.value  - 

list.value else number.value

 list.value 

sign + sign.negative false sign - sign.negative true list bit 

bit.position list.position 

list.value

 bit.value list0

 list 1 bit 

list1 .position  list 0 .position + 

1 bit.position list 0 .position 

list0 .value list1 .value + bit.value 

bit 0 bit.value 0 bit 1 bit.value 2bit.position 

 
Explanation of attribute rules 

Num -> sign list /*since list is the rightmost so it is assigned position 0 

*Sign determines whether the value of the number would be 

*same or the negative of the value of list*/ 

Sign -> + | - /*Set the Boolean attribute (negative) for sign*/ 

List -> bit /*bit position is the same as list position because this bit is the rightmost 

*value of the list is same as bit.*/ 

List0 -> List1 bit /*position and value 

calculations*/ Bit -> 0 | 1 /*set the corresponding 

value*/ 

 
 

 
Attributes of RHS can be computed from attributes of LHS and vice versa. 
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The Parse Tree and the Dependence graph are as under 
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. 
 

Dependence graph shows the dependence of attributes on other attributes, along 
with the syntax tree. Top down traversal is followed by a bottom up traversal to resolve 
the dependencies. Number, val and neg are synthesized attributes. Pos is an inherited 
attribute. 

 

Attributes : . Attributes fall into two classes namely synthesized attributes and inherited 

attributes. Value of a synthesized attribute is computed from the values of its children nodes. 

Value of an inherited attribute is computed from the sibling and parent nodes. 

 
The attributes are divided into two groups, called synthesized attributes and 

inherited attributes. The synthesized attributes are the result of the attribute evaluation 
rules also using the values of the inherited attributes. The values of the inherited 
attributes are inherited from parent nodes and siblings. 

 
Each grammar production A      a has associated with it a set of semantic rules of 

the form b = f (c1 , c2 , ..., ck ) , Where f is a function, and either ,b is a synthesized 

attribute of A Or 

- b is an inherited attribute of one of the grammar symbols on the right 
 

. attribute b depends on attributes c1 , c2 , ..., ck 

 
Dependence relation tells us what attributes we need to know before hand to 

calculate a particular attribute. 

 
Here the value of the attribute b depends on the values of the attributes c1 to ck . 

If c1 to ck belong to the children nodes and b to A then b will be called a synthesized 
attribute. And if b belongs to one among a (child nodes) then it is an inherited attribute 
of one of the grammar symbols on the right. 
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Synthesized Attributes : A syntax directed definition that uses only synthesized attributes 
is said to be an S- attributed definition 

 
. A parse tree for an S-attributed definition can be annotated by evaluating semantic 
rules for attributes 

 
S-attributed grammars are a class of attribute grammars, comparable with L-attributed 
grammars but characterized by having no inherited attributes at all. Inherited attributes, 
which must be passed down from parent nodes to children nodes of the abstract syntax 
tree during the semantic analysis, pose a problem for bottom-up parsing because in 
bottom-up parsing, the parent nodes of the abstract syntax tree are created after 
creation of all of their children. Attribute evaluation in S-attributed grammars can be 
incorporated conveniently in both top-down parsing and bottom- up parsing . 

 
Syntax Directed Definitions for a desk calculator program 

L E n Print (E.val) 

E E + T E.val = E.val + T.val 

E       T E.val = T.val 

T T * F T.val = T.val * F.val 

T       F T.val = F.val 

F (E) F.val = E.val 

F digit F.val = digit.lexval 

 
. terminals are assumed to have only synthesized attribute values of which are supplied 
by lexical analyzer 

 
. start symbol does not have any inherited attribute 

 
This is a grammar which uses only synthesized attributes. Start symbol has no 
parents, hence no inherited attributes. 

 
Parse tree for 3 * 4 + 5 n 
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Using the previous attribute grammar calculations have been worked out here for 3 * 
4 + 5 n. Bottom up parsing has been done. 

 

Inherited Attributes: An inherited attribute is one whose value is defined in 

terms of attributes at the parent and/or siblings 

 
. Used for finding out the context in which it appears 

. possible to use only S-attributes but more natural to use inherited 

attributes D T L L.in = T.type 

T real T.type = real 

T int T.type = int 

L L1 , id L1 .in = L.in; addtype(id.entry, L.in) 

L id addtype (id.entry,L.in) 

 
Inherited attributes help to find the context (type, scope etc.) of a token e.g., the type 
of a token or scope when the same variable name is used multiple times in a program in 
different functions. An inherited attribute system may be replaced by an S -attribute 
system but it is more natural to use inherited attributes in some cases like the example 
given above. 

 
Here addtype(a, b) functions adds a symbol table entry for the id a and attaches to it the type 
of b 
. 

 
Parse tree for real x, y, z 
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Dependence of attributes in an inherited attribute system. The value of in (an inherited 
attribute) at the three L nodes gives the type of the three identifiers x , y and z . These 
are determined by computing the value of the attribute T.type at the left child of the root 
and then valuating L.in top down at the three L nodes in the right subtree of the root. At 
each L node the procedure addtype is called which inserts the type of the identifier to its 
entry in the symbol table. The figure also shows the dependence graph which is 
introduced later. 

 
Dependence Graph : . If an attribute b depends on an attribute c then the semantic 
rule for b must be evaluated after the semantic rule for c 

 
. The dependencies among the nodes can be depicted by a directed graph called 
dependency graph 

 
Dependency Graph : Directed graph indicating interdependencies among the 
synthesized and inherited attributes of various nodes in a parse tree. 

 
Algorithm to construct dependency 

graph for each node n in the parse 

tree do 

for each attribute a of the grammar 

symbol do construct a node in the 

dependency graph 

for a 

 
for each node n in the parse tree do 

 
for each semantic rule b = f (c1 , c2 , ..., ck ) do 
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{ associated with production at n } 
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for i = 1 to k do 
 

Construct an edge from ci to b 
 

An algorithm to construct the dependency graph. After making one node for 
every attribute of all the nodes of the parse tree, make one edge from each of the other 
attributes on which it depends. 

 
For example , 

 

 

 
The semantic rule A.a = f(X.x , Y.y) for the production A -> XY defines the 

synthesized attribute a of A to be dependent on the attribute x of X and the attribute y of 
Y . Thus the dependency graph will contain an edge from X.x to A.a and Y.y to A.a 
accounting for the two dependencies. Similarly for the semantic rule X.x = g(A.a , Y.y) 
for the same production there will be an edge from A.a to X.x and an edg e from Y.y to 
X.x. 

 
Example 

 
. Whenever following production is used in a 

parse tree E E 1 + E 2 E.val = E 1 .val 

+ E 2 .val 

we create a dependency graph 
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The synthesized attribute E.val depends on E1.val and E2.val hence the two 
edges one each from E 1 .val & E 2 .val 

 
For example, the dependency graph for the sting real id1, id2, id3 

 
. Put a dummy synthesized attribute b for a semantic rule that consists of a procedure call 

 

 
The figure shows the dependency graph for the statement real id1, id2, id3 along 

with the parse tree. Procedure calls can be thought of as rules defining the values of 
dummy synthesized attributes of the nonterminal on the left side of the associated 
production. Blue arrows constitute the dependency graph and black lines, the parse 
tree. Each of the semantic rules addtype (id.entry, L.in) associated with the L 
productions leads to the creation of the dummy attribute. 

 
Evaluation Order : 

 

Any topological sort of dependency graph gives a valid order in which semantic rules 
must be evaluated 

 
a4 = 
real a5 
= a4 
addtype(id3.entry, 
a5) a7 = a5 
addtype(id2.entry, 
a7 ) 



  
 

 

 
 

a9 := a7 addtype(id1.entry, a9 ) 

 
A topological sort of a directed acyclic graph is any ordering m1, m2, m3 .......mk 

of the nodes of the graph such that edges go from nodes earlier in the ordering to later 
nodes. Thus if mi -> mj is an edge from mi to mj then mi appears before mj in the 
ordering. The order of the statements shown in the slide is obtained from the topological 
sort of the dependency graph in the previous slide. 'an' stands for the attribute 
associated with the node numbered n in the dependency graph. The numbering is as 
shown in the previous slide. 

 
Abstract Syntax Tree is the condensed form of the parse tree, which is 

 
. Useful for representing language constructs. 
. The production : S if B then s1 else s2 may appear as 

 

 
In the next few slides we will see how abstract syntax trees can be constructed 

from syntax directed definitions. Abstract syntax trees are condensed form of parse 
trees. Normally operators and keywords appear as leaves but in an abstract syntax tree 
they are associated with the interior nodes that would be the parent of those leaves in 
the parse tree. This is clearly indicated by the examples in these slides. 

 
. Chain of single productions may be collapsed, and operators move to the parent nodes 

 

 

Chain of single production are collapsed into one node with the operators moving up to 
become the node. 
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For Constructing the Abstract Syntax tree for expressions, 

 
. Each node can be represented as a record 

 
. operators : one field for operator, remaining fields ptrs to operands 
mknode( op,left,right ) 

 
. identifier : one field with label id and another ptr to symbol table mkleaf(id,entry) 

 
. number : one field with label num and another to keep the value of the 
number mkleaf(num,val) 

 
Each node in an abstract syntax tree can be implemented as a record with 

several fields. In the node for an operator one field identifies the operator (called the 
label of the node) and the remaining contain pointers to the nodes for operands. Nodes 
of an abstract syntax tree may have additional fields to hold values (or pointers to 
values) of attributes attached to the node. The functions given in the slide are used to 
create the nodes of abstract syntax trees for expressions. Each function returns a 
pointer to a newly created note. 

 
Example : The following 

sequence of function calls 

creates a parse tree for a- 4 + c 

 
P 1 = mkleaf(id, entry.a) P 

2 = mkleaf(num, 4) 

P 3 = mknode(-, P 1 , P 2 ) P 4 = 

mkleaf(id, entry.c) 

P 5 = mknode(+, P 3 , P 4 ) 

 
An example showing the formation of an abstract syntax tree by the given function 

calls for the expression a-4+c.The call sequence can be explained as: 

 

1. P1 = mkleaf(id,entry.a) : A leaf node made for the identifier Qa R and an entry for Qa R is 

made in the symbol table. 

2. P2 = mkleaf(num,4) : A leaf node made for the number Q4 R. 

3. P3 = mknode(-,P1,P2) : An internal node for the Q- Q.I takes the previously made nodes as 

arguments and represents the expression Qa-4 R. 

4. P4 = mkleaf(id,entry.c) : A leaf node made for the identifier Qc R and an entry for Qc R is 

made in the symbol table. 

5. P5 = mknode(+,P3,P4) : An internal node for the Q+ Q.I takes the previously made nodes as 

arguments and represents the expression Qa- 4+c R. 



  
 

 

 
 
 

A syntax directed definition for constructing syntax tree 

E E 1 + T E.ptr = mknode(+, E 1 .ptr, T.ptr) 

E T E.ptr = T.ptr 

T T 1 * F T.ptr := mknode(*, T 1 .ptr, F.ptr) 

T F T.ptr := F.ptr 

F (E) F.ptr := E.ptr 

F id F.ptr := mkleaf(id, entry.id) 

F num F.ptr := mkleaf(num,val) 

 

 
Now we have the syntax directed definitions to construct the parse tree for a given 
grammar. All the rules mentioned in slide 29 are taken care of and an abstract syntax 
tree is formed. 

 
Translation schemes : A CFG where semantic actions occur within the right 
hand side of production, A translation scheme to map infix to postfix. 

E T R 
addop T { print(addop)} R | 

e T num {print(num)} 

Parse tree for 9 - 5 + 2 
 
 

 
We assume that the actions are terminal symbols and Perform depth first order 

traversal to obtain 9 5 - 2 +. 

 When designing translation scheme, ensure attribute value is available when referred to 

   In case of synthesized attribute it is trivial (why?) 

In a translation scheme, as we are dealing with implementation, we have to 
explicitly worry about the order of traversal. We can now put in between the rules some 



  
 

 

actions as part of the RHS. We put this rules in order to control the order of traversals. 
In the given example, we have two terminals (num and addop). It can generally be seen 
as a number followed by R (which 
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necessarily has to begin with an addop). The given grammar is in infix notation and we 
need to convert it into postfix notation. If we ignore all the actions, the parse tree is in 
black, without the red edges. If we include the red edges we get a parse tree with 
actions. The actions are so far treated as a terminal. Now, if we do a depth first 
traversal, and whenever we encounter a action we execute it, we get a post-fix notation. 
In translation scheme, we have to take care of the evaluation order; otherwise some of 
the parts may be left undefined. For different actions, different result will be obtained. 
Actions are something we write and we have to control it. Please note that translation 
scheme is different from a syntax driven definition. In the latter, we do not have any 
evaluation order; in this case we have an explicit evaluation order. By explicit evaluation 
order we have to set correct action at correct places, in order to get the desired output. 
Place of each action is very important. We have to find appropriate places, and that is 
that translation scheme is all about. If we talk of only synthesized attribute, the 
translation scheme is very trivial. This is because, when we reach we know that all the 
children must have been evaluated and all their attributes must have also been dealt 
with. This is because finding the place for evaluation is very simple, it is the rightmost 
place. 

 
In case of both inherited and synthesized attributes 

 
. An inherited attribute for a symbol on rhs of a production must be computed in an 
action before that symbol 

 
S   A 1 A 2        {A 1 .in = 1,A 2 .in = 2} 

A   a {print(A.in)} 

 

 
Depth first order traversal gives error undefined 

 
. A synthesized attribute for non terminal on the lhs can be computed after all 
attributes it references, have been computed. The action normally should be 
placed at the end of rhs 

 
We have a problem when we have both synthesized as well as inherited attributes. For 
the given example, if we place the actions as shown, we cannot evaluate it. This is 
because, when doing a depth first traversal, we cannot print anything for A1. This is 
because A1 has not yet been initialized. We, therefore have to find the correct places for 
the actions. This can be that the inherited attribute of A must be calculated on its left. 
This can be seen logically from the definition of L-attribute definition, which says that 
when we reach a node, then everything on its left must have been computed. If we do 
this, we will always have the attribute evaluated at the 



 
  

 

 
 

correct place. For such specific cases (like the given example) calculating anywhere 
on the left will work, but generally it must be calculated immediately at the left. 

 
Example: Translation scheme for EQN 

 
S B B.pts = 

10 S.ht = 

B.ht 

B B1 B2 B1 .pts = 

B.pts B 2 .pts 

= B.pts 

B.ht = max(B 1 .ht,B2 .ht) 

B B1 sub B 2 B1 .pts = B.pts; 

B 2 .pts = 

shrink(B.pts) B.ht = 

disp(B1 .ht,B2 .ht) 

B text B.ht = text.h * B.pts 

 
We now look at another example. This is the grammar for finding out how do I compose 
text. EQN was equation setting system which was used as an early type setting system 
for UNIX. It was earlier used as an latex equivalent for equations. We say that start 
symbol is a block: S - >B We can also have a subscript and superscript. Here, we look 
at subscript. A Block is composed of several blocks: B -> B1B2 and B2 is a subscript of 
B1. We have to determine what is the point size (inherited) and height Size 
(synthesized). We have the relevant function for height and point size given along side. 
After putting actions in the right place 

 
 

 
 

We have put all the actions at the correct places as per the rules stated. Read it from 
left to right, and top to bottom. We note that all inherited attribute are calculated on the 
left of B symbols and synthesized attributes are on the right. 

 

Top down Translation: Use predictive parsing to implement L-attributed definitions 



 
  

 

E E 1 + T E.val := E 1 .val + T.val 



  
 

 

 
 

E E 1 - T E.val := E 1 .val - T.val 

E T E.val := T.val 

T (E) T.val := E.val 

T num T.val := num.lexval 

 
We now come to implementation. We decide how we use parse tree and L-

attribute definitions to construct the parse tree with a one-to-one correspondence. We 
first look at the top- down translation scheme. The first major problem is left recursion. 
If we remove left recursion by our standard mechanism, we introduce new symbols, and 
new symbols will not work with the existing actions. Also, we have to do the parsing in a 
single pass. 

 

TYPE SYSTEM AND TYPE CHECKING: 

 

. If both the operands of arithmetic operators +, -, x are integers then the result is of type 
integer 
. The result of unary & operator is a pointer to the object referred to by the operand. 

- If the type of operand is X then type of result is pointer to X 
 

In Pascal, types are classified under: 
 

1. Basic types: These are atomic types with no internal structure. They include the types 
boolean, character, integer and real. 

 

2. Sub-range types: A sub-range type defines a range of values within the range of another 
type. For example, type A = 1..10; B = 100..1000; U = 'A'..'Z'; 

 

3. Enumerated types: An enumerated type is defined by listing all of the possible values for the 
type. For example: type Colour = (Red, Yellow, Green); Country = (NZ, Aus, SL, WI, Pak, Ind, SA, 
Ken, Zim, Eng); Both the sub-range and enumerated types can be treated as basic types. 

 

4. Constructed types: A constructed type is constructed from basic types and other basic types. 
Examples of constructed types are arrays, records and sets. Additionally, pointers and functions 
can also be treated as constructed types. 

 

TYPE EXPRESSION: 

 
It is an expression that denotes the type of an expression. The type of a language 
construct is denoted by a type expression 

 

 It is either a basic type or it is formed by applying operators called type 
constructor to other type expressions 



  
 

 

 A type constructor applied to a type expression is a type expression 

 A basic type is type expression 
 

- type error : error during type checking 
- void : no type value 



 
 

 

 
 

The type of a language construct is denoted by a type expression. A type expression is 
either a basic type or is formed by applying an operator called a type constructor to 
other type expressions. Formally, a type expression is recursively defined as: 

 

1. A basic type is a type expression. Among the basic types are boolean , char , integer , and real 

.A special basic type, type_error , is used to signal an error during type checking. 

Another special basic type is void which denotes "the absence of a value" and is used 

to check statements. 

2. Since type expressions may be named, a type name is a type expression. 

3. The result of applying a type constructor to a type expression is a type expression. 

4. Type expressions may contain variables whose values are type expressions themselves. 

 
TYPE CONSTRUCTORS: are used to define or construct the type of user defined 

types based on their dependent types. 

Arrays : If T is a type expression and I is a range of integers, then array ( I , T ) is 

the type expression denoting the type of array with elements of type T and index 

set I. 

 
For example, the Pascal declaration, var A: array[1 .. 10] of integer; associates 

the type expression array ( 1..10, integer ) with A. 

 

Products : If T1 and T2 are type expressions, then their Cartesian product T1 X T2 is also a type 

expression. 

 
Records : A record type constructor is applied to a tuple formed from field names 

and field types. For example, the declaration 

Consider the 

declaration type row = 

record 

addr : integer; 
lexeme : array [1 .. 15] of 
char end; 
var table: array [1 .. 10] of row; 

 

The type row has type expression : record ((addr x integer) x (lexeme x array(1 .. 15, char))) 

and type expression of table is array(1 .. 10, row) 

 

Note: Including the field names in the type expression allows us to define another 
record type with the same fields but with different names without being forced to 
equate the two. 

 



 
 

 

Pointers: If T is a type expression, then pointer ( T ) is a type expression 

denoting the type "pointer to an object of type T". 

For example, in Pascal, the declaration 

var p: row declares variable p to have type pointer( row ). 



  
 

 

 

 

Functions : Analogous to mathematical functions, functions in programming languages 

may be defined as mapping a domain type D to a range type R. The type of such a 

function is denoted by the type expression D R. For example, the built-in function mod of 

Pascal has domain type int X int, and range type int . Thus we say mod has the type: int 

x int -> int 

As another example, according to the Pascal 

declaration function f(a, b: char) : integer; 

Here the type of f is denoted by the type expression is char x char pointer( integer ) 

 
SPECIFICATIONS OF A TYPE CHECKER: Consider a language which consists of a sequence 
of declarations followed by a single expression 

 
P D ; E 

 
D D ; D | id : T 

 
T char | integer | array [ num] of T | 

^ T E literal | num | E mod E | E [E] | E 

^ 

A type checker is a translation scheme that synthesizes the type of each expression 

from the types of its sub-expressions. Consider the above given grammar that 
generates programs consisting of a sequence of declarations D followed by a single 
expression E. 

 

Specifications of a type checker for the language of the above grammar: A program generated 

by this grammar is 

 
key : integer; 
key mod 
1999 

 

Assumptions: 

 

1. The language has three basic types: char , int and type-error 
 

2. For simplicity, all arrays start at 1. For example, the declaration array[256] of char leads to 
the type expression array ( 1.. 256, char). 

 
Rules for Symbol Table entry 

D id : T addtype(id.entry, T.type) 

T char T.type = char 



  
 

 

T integer T.type = int 

T ^T1 T.type = pointer(T1 .type) 

T array [ num ] of T 1 T.type = array(1..num, T 1 .type) 



  
 

 

 

 

TYPE CHECKING OF FUNCTIONS : 

 

Consider the Syntax Directed Definition, 

 
E E1 ( E2 ) E. type = if E2 .type == s and 

E1 .type == s t 

then t 
 

else type-error 

 
The rules for the symbol table entry are specified above. These are basically the way 
in which the symbol table entries corresponding to the productions are done. 

 
Type checking of functions 

 
The production E -> E ( E ) where an expression is the application of one expression to 
another can be used to represent the application of a function to an argument. The rule 
for checking the type of a function application is 

 

E -> E1 ( E2 ) { E.type := if E2.type == s and E1. type == s -> t then t else type_error } 

 

This rule says that in an expression formed by applying E1 to E2, the type of E1 must 
be a function s -> t from the type s of E2 to some range type t ; the type of E1 ( E2 ) is t . 
The above rule can be generalized to functions with more than one argument 
byconstructing a product type consisting of the arguments. Thus n arguments of type T1 
, T2 

 
... Tn can be viewed as a single argument of the type T1 X T2 ... X Tn . For 

example, root : ( real real) X real real 

declares a function root that takes a function from reals to reals and a real as 
arguments and returns a real. The Pascal-like syntax for this declaration is 

 
function root ( function f (real) : real; x: real ) : real 

 

TYPE CHECKING FOR EXPRESSIONS: consider the following SDD for expressions 

 
E literal E.type = char 

E num E.type = integer 

E id E.type = lookup(id.entry) 

E E1 mod E2 E.type = if E 1 .type == integer and 



  
 

 

E2 

.type==integer 

then integer 



  
 

 

 

 
else type_error 

E E1 [E2 ] E.type = if E2 .type==integer 

and E1 .type==array(s,t) 

then t 

else type_error 

E E1 ^ E.type = if E1 

.type==pointer(t) then t 

else type_error 

 
To perform type checking of expressions, following rules are used. Where the 
synthesized attribute type for E gives the type expression assigned by the type system to 
the expression generated by E. 

 
The following semantic rules say that constants represented by the tokens literal and 
num have type char and integer , respectively: 

 

E -> literal { E.type := char } E -

> num { E.type := integer } 

. The function lookup ( e ) is used to fetch the type saved in the symbol-table entry pointed to 
by 
e. When an identifier appears in an expression, its declared type is fetched and 
assigned to the attribute type: 

 

E -> id { E.type := lookup ( id . entry ) } 

 
. According to the following rule, the expression formed by applying the mod 
operator to two sub-expressions of type integer has type integer ; otherwise, its type 
is type_error . 

 

E -> E1 mod E2 { E.type := if E1.type == integer and E2.type == integer then integer else 

type_error } 

 
In an array reference E1 [ E2 ], the index expression E2 must have type integer , 
inwhich case the result is the element type t obtained from the type array ( s, t ) of E1. 

 

E -> E1 [ E2 ] { E.type := if E2.type == integer and E1.type == array ( s, t ) then t else 

type_error } 

 
Within expressions, the postfix operator yields the object pointed to by its operand. The 
type of E is the type t of the object pointed to by the pointer E: 



  
 

 

 
E E1 { E.type := if E1.type == pointer ( t ) then t else type_error



 
 
 

 

 
 

TYPE CHECKING OF STATEMENTS: Statements typically do not have values. Special 
basic type void can be assigned to them. Consider the SDD for the grammar below 
which generates Assignment statements conditional, and looping statements. 

 
S id := E S.Type = if id.type == E.type 

then void 

else type_error 

S if E then S1 S.Type = if E.type == boolean 

then S1.type 

else 

type_error 

S while E do S1 S.Type = if E.type == boolean 

then S1.type 

else type_error 

S S1 ; S2 S.Type = if S1.type == 

void and S2.type == void 

then void 

else type_error 

 

Since statements do not have values, the special basic type void is assigned to 
them, but if an error is detected within a statement, the type assigned to the 
statement is type_error . 

 
The statements considered below are assignment, conditional, and while statements. 
Sequences of statements are separated by semi-colons. The productions given below 
can be combined with those given before if we change the production for a complete 
program to P -> D; S. The program now consists of declarations followed by 
statements. 

 
Rules for type checking the statements are given below. 

 

1. S id := E { S.type := if id . type == E.type then void else type_error } 
 

This rule checks that the left and right sides of an assignment statement have the same type. 

 

2. S if E then S1 { S.type := if E.type == boolean then S1.type else type_error } 
 

This rule specifies that the expressions in an if -then statement must have the type boolean . 
 

3. S while E do S1 { S.type := if E.type == boolean then S1.type else type_error } 
 

This rule specifies that the expression in a while statement must have the type boolean . 



 
 
 

 

 
 

 

4. S S1; S2 { S.type := if S1.type == void and S2.type == void then void else type_error } 
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          UNIT – V  

Code optimization and Code generation 

CODE OPTIMIZATION 

Considerations for optimization : The code produced by the straight forward 

compiling algorithms can often be made to run faster or take less space,or both. This 
improvement is achieved by program transformations that are traditionally called 
optimizations. Machine independent optimizations are program transformations that 
improve the target code without taking into consideration any properties of the target 
machine. Machine dependant optimizations are based on register allocation and 
utilization of special machine-instruction sequences. 

 

Criteria for code improvement transformations 
 

- Simply stated, the best program transformations are those that yield the most benefit 

for the least effort. 

- First, the transformation must preserve the meaning of programs. That is, the 

optimization must not change the output produced by a program for a given input, or 

cause an error. 

- Second, a transformation must, on the average, speed up programs by a measurable 

amount. 

- Third, the transformation must be worth the effort. 
 

Some transformations can only be applied after detailed, often time-consuming analysis 

of the source program, so there is little point in applying them to programs that will be 

run only a few times. 
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OBJECTIVES OF OPTIMIZATION: The main objectives of the optimization techniques are as 

follows 

1. Exploit the fast path in case of multiple paths fro a given situation. 
 

2. Reduce redundant instructions. 
 

3. Produce minimum code for maximum work. 
 

4. Trade off between the size of the code and the speed with which it gets executed. 
 

5. Place code and data together whenever it is required to avoid unnecessary searching 

of data/code 

During code transformation in the process of optimization, the basic requirements are as 
follows: 

 

1. Retain the semantics of the source code. 
 

2. Reduce time and/ or space. 
 

3. Reduce the overhead involved in the optimization process. 

 

Scope of Optimization: Control-Flow Analysis 

 

Consider all that has happened up to this point in the compiling process—

lexical analysis, syntactic analysis, semantic analysis and finally intermediate-code 

generation. The compiler has done an enormous amount of analysis, but it still doesn‘t 

really know how the program does what it does. In control-flow analysis, the compiler 

figures out even more information about how the program does its work, only now it can 

assume that there are no syntactic or semantic errors in the code. 

 
Control-flow analysis begins by constructing a control-flow graph, which is a 

graph of the different possible paths program flow could take through a function. To 

build the graph, we first divide the code into basic blocks. A basic block is a segment 

of the code that a program must enter at the beginning and exit only at the end. This 

means that only the first statement can be reached from outside the block (there are no 

branches into the middle of the block) and all statements are executed consecutively 

after the first one is (no branches or halts until the exit). Thus a basic block has exactly 

one entry point and one exit point. If a program executes the first instruction in a basic 

block, it must execute every instruction in the block sequentially after it. 

 
A basic block begins in one of several ways: 

• The entry point into the function 
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• The target of a branch (in our example, any label) 

• The instruction immediately following a branch or a return 

 
 

A basic block ends in any of the following ways: 

• A jump statement 
• A conditional or unconditional branch 
• A return statement 

 
Now we can construct the control-flow graph between the blocks. Each basic 

block is a node in the graph, and the possible different routes a program might take are 

the connections, i.e. if a block ends with a branch, there will be a path leading from that 

block to the branch target. The blocks that can follow a block are called its successors. 

There may be multiple successors or just one. Similarly the block may have many, one, 

or no predecessors. Connect up the flow graph for Fibonacci basic blocks given above. 

What does an if then-else look like in a flow graph? What about a loop? You probably 

have all seen the gcc warning or javac error about: "Unreachable code at line XXX." 

How can the compiler tell when code is unreachable? 

 
LOCAL OPTIMIZATIONS 

 

Optimizations performed exclusively within a basic block are called "local 

optimizations". These are typically the easiest to perform since we do not consider any 

control flow information; we just work with the statements within the block. Many of the 

local optimizations we will discuss have corresponding global optimizations that operate 

on the same principle, but require additional analysis to perform. We'll consider some of 

the more common local optimizations as examples. 

 

FUNCTION PRESERVING TRANSFORMATIONS 

 

 Common sub expression elimination 

 Constant folding 

 Variable propagation 

 Dead Code Elimination 

 Code motion 

 Strength Reduction 

 
1. Common Sub Expression Elimination: 

 

Two operations are common if they produce the same result. In such a case, it is likely 

more efficient to compute the result once and reference it the second time rather than 

re-evaluate it. An 



Department of Computer Science & Engineering Course File : Compiler Design 
 

 

 

 

expression is alive if the operands used to compute the expression have not been 

changed. An expression that is no longer alive is dead. 

Example : 

a=b*c; 

d=b*c+x-

y; 

We can eliminate the second evaluation of b*c from this code if none of the 

intervening statements has changed its value. We can thus rewrite the code as 

 

t1=b*c; 

a=t1; 

d=t1+x-

y; 

Let us consider the following 

code a=b*c; 

b=x; 

d=b*c+ x-

y; 

in this code, we can not eliminate the second evaluation of b*c because the value of b 

is changed due to the assignment b=x before it is used in calculating d. 

We can say the two expressions are common if 

 They lexically equivalent i.e., they consist of identical operands connected to 

each other by identical operator. 

 They evaluate the identical values i.e., no assignment statements for any of their 

operands exist between the evaluations of these expressions. 

 The value of any of the operands use in the expression should not be changed 

even due to the procedure call. 

Example : 

c=a*b; 

x=a; 

d=x*b; 

We may note that even though expressions a*b and x*b are common in the 

above code, they can not be treated as common sub expressions. 

 

2. Variable Propagation: 
 

Let us consider the above code once again 

 
c=a*b; 

x=a; 

d=x*b+4

; 
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if we replace x by a in the last statement, we can identify a*b and x*b as common 

sub expressions. This technique is called variable propagation where the use of one 

variable is replaced by another variable if it has been assigned the value of same 

Compile Time evaluation 

The execution efficiency of the program can be improved by shifting execution 

time actions to compile time so that they are not performed repeatedly during the 

program execution. We can evaluate an expression with constants operands at compile 

time and replace that expression by a single value. This is called folding. Consider the 

following statement: 

 
a= 2*(22.0/7.0)*r; 

Here, we can perform the computation 2*(22.0/7.0) at compile time itself. 

 

3. Dead Code Elimination: 
If the value contained in the variable at a point is not used anywhere in the 

program subsequently, the variable is said to be dead at that place. If an assignment is 

made to a dead variable, then that assignment is a dead assignment and it can be 

safely removed from the program. 

Similarly, a piece of code is said to be dead, which computes value that are never used 

anywhere in the program. 

c=a*b; 

x=a; 

d=x*b+4

; 

Using variable propagation, the code can be written as 

follows: c=a*b; 

x=a; 

d=a*b+4

; 

Using Common Sub expression elimination, the code can be written as follows: 

t1= 

a*b; 

c=t1; 

x=a; 

d=t1+4

; 

Here, x=a will considered as dead code. Hence it is 

eliminated. t1= a*b; 

c=t1; 

d=t1+4

; 
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4. Code Movement: 
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The motivation for performing code movement in a program is to improve the execution 

time of the program by reducing the evaluation frequency of expressions. This can be 

done by moving the evaluation of an expression to other parts of the program. Let us 

consider the bellow code: 

If(a<10) 

{ 

b=x^2-y^2; 

} 

else 

{ 

b=5

; 

a=( x^2-y^2)*10; 

} 

 
At the time of execution of the condition a<10, x^2-y^2 is evaluated twice. So, we can 

optimize the code by moving the out side to the block as follows: 

t= x^2-
y^2; 

If(a<10) 

{ 

b=t; 

} 

else 

{ 

b=5

; 

a=t*10; 

} 

5. Strength Reduction: 
In the frequency reduction transformation we tried to reduce the execution 

frequency of the expressions by moving the code. There is other class of 

transformations which perform equivalent actions indicated in the source program by 

reducing the strength of operators. By strength reduction, we mean replacing the high 

strength operator with low strength operator with out affecting the program meaning. Let 

us consider the bellow example: 

i=1; 

while (i<10) 

{ 

y=i*4; 

} 

 
The above can written as 

follows: i=1; 
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t=4; 
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while (i<10) 

{ 

y=t; 

t=t+4

; 

} 

Here the high strength operator * is replaced with +. 

 

GLOBAL OPTIMIZATIONS, DATA-FLOW ANALYSIS: 

So far we were only considering making changes within one basic block. With 

some Additional analysis, we can apply similar optimizations across basic blocks, 

making them global optimizations. It‘s worth pointing out that global in this case does 

not mean across the entire program. We usually optimize only one function at a time. 

Inter procedural analysis is an even larger task, one not even attempted by some 

compilers. 

The additional analysis the optimizer does to perform optimizations across basic 

blocks is called data-flow analysis. Data-flow analysis is much more complicated than 

control-flow analysis, and we can only scratch the surface here. 

Let‘s consider a global common sub expression elimination optimization as our 

example. Careful analysis across blocks can determine whether an expression is alive 

on entry to a block. Such an expression is said to be available at that point. Once the 

set of available expressions is known, common sub-expressions can be eliminated on 

a global basis. Each block is a node in the flow graph of a program. The successor 

set (succ(x)) for a node x is the set of all nodes that x directly flows into. The 

predecessor set (pred(x)) for a node x is the set of all nodes that flow directly into x. An 

expression is defined at the point where it is assigned a value and killed when one of its 

operands is subsequently assigned a new value. An expression is available at some 

point p in a flow graph if every path leading to p contains a prior definition of that 

expression which is not subsequently killed. Lets define such useful functions in DF 

analysis in following lines. 

avail[B] = set of expressions available on entry to block B 

exit[B] = set of expressions available on exit from B 

avail[B] = ∩ exit[x]: x ∈ pred[B] (i.e. B has available the intersection of the exit of its 

predecessors) 
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killed[B] = set of the expressions killed in B 

defined[B] = set of expressions defined in B 

exit[B] = avail[B] - killed[B] + defined[B] 
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avail[B] = ∩ (avail[x] - killed[x] + defined[x]) : x ∈ pred[B] 

Here is an Algorithm for Global Common Sub-expression Elimination: 

1) First, compute defined and killed sets for each basic block (this does not involve any of 

its predecessors or successors). 

2) Iteratively compute the avail and exit sets for each block by running the following 

algorithm until you hit a stable fixed point: 

a) Identify each statement s of the form a = b op c in some block B such that b op c is 

available at the entry to B and neither b nor c is redefined in B prior to s. 

b) Follow flow of control backward in the graph passing back to but not through 

each block that defines b op c. The last computation of b op c in such a block 

reaches s. 

c) After each computation d = b op c identified in step 2a, add statement t = d to 

that block where t is a new temp. 

d) Replace s by a = t. 

Try an example to make things 

clearer: main: 

BeginFunc 28; 
b = a + 2 
; c = 4 * b 
; 
tmp1 = b < c; 
ifNZ tmp1 goto L1 
; b = 1 ; 
L1: 
d = a + 2 

; EndFunc ; 
 

First, divide the code above into basic blocks. Now calculate the available expressions 

for each block. Then find an expression available in a block and perform step 2c above. 

What common sub-expression can you share between the two blocks? What if the 

above code were: 

main: 
BeginFunc 28; 

b = a + 2 
; c = 4 * b 
; 
tmp1 = b < c ; 
IfNZ tmp1 Goto L1 
; b = 1 ; 
z = a + 2 ; <========= an additional line here 

L1: 
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d = a + 2 ; 
EndFunc ; 



  

 

 
 
 

MACHINE OPTIMIZATIONS 

In final code generation, there is a lot of opportunity for cleverness in generating 

efficient target code. In this pass, specific machines features (specialized instructions, 

hardware pipeline abilities, register details) are taken into account to produce code 

optimized for this particular architecture. 

REGISTER ALLOCATION: 

One machine optimization of particular importance is register allocation, which is 
perhaps the single most effective optimization for all architectures. Registers are the 
fastest kind of memory available, but as a resource, they can be scarce. 

The problem is how to minimize traffic between the registers and what lies 
beyond them in the memory hierarchy to eliminate time wasted sending data back and 
forth across the bus and the different levels of caches. Your Decaf back-end uses a very 
naïve and inefficient means of assigning registers, it just fills them before performing an 
operation and spills them right afterwards. 

A much more effective strategy would be to consider which variables are more 
heavily in demand and keep those in registers and spill those that are no longer 
needed or won't be needed until much later. 

One common register allocation technique is called "register coloring", after the 
central idea to view register allocation as a graph coloring problem. If we have 8 
registers, then we try to color a graph with eight different colors. The graph‘s nodes are 
made of "webs" and the arcs are determined by calculating interference between the 
webs. A web represents a variable‘s definitions, places where it is assigned a value (as 
in x = …), and the possible different uses of those definitions (as in y = x + 2). This 
problem, in fact, can be approached as another graph. The definition and uses of a 
variable are nodes, and if a definition reaches a use, there is an arc between the two 
nodes. If two portions of a variable‘s definition-use graph are unconnected, then we have 
two separate webs for a variable. In the interference graph for the routine, each node is 
a web. We seek to determine which webs don't interfere with one another, so we know 
we can use the same register for those two variables. For example, consider the 
following code: 

i = 10; 
j = 20; 
x = i + j; 
y = j + 
k; 
We say that i interferes with j because at least one pair of i‘s definitions and uses 

is separated by a definition or use of j, thus, i and j are "alive" at the same time. A 

variable is alive between the time it has been defined and that definition‘s last use, after 

which the variable is dead. If two variables interfere, then we cannot use the same 

register for each. But two variables that don't interfere can since there is no overlap in 

the liveness and can occupy the same register. Once we have the interference graph 

constructed, we r-color it so that no two adjacent nodes share the same color (r is the 

number of registers we have, each color represents a different register). 

We may recall that graph-coloring is NP-complete, so we employ a heuristic 

rather than an optimal algorithm. Here is a simplified version of something that might be 

used: 



 

 

 

 

1. Find the node with the least neighbors. (Break ties arbitrarily.) 

2. Remove it from the interference graph and push it onto a stack 

3. Repeat steps 1 and 2 until the graph is empty. 

4. Now, rebuild the graph as follows: 

a. Take the top node off the stack and reinsert it into the graph 

b. Choose a color for it based on the color of any of its neighbors presently in the 

graph, rotating colors in case there is more than one choice. 

c. Repeat a , and b until the graph is either completely rebuilt, or there is no 

color available to color the node. 

If we get stuck, then the graph may not be r-colorable, we could try again with a 

different heuristic, say reusing colors as often as possible. If no other choice, we have to 

spill a variable to memory. 

INSTRUCTION SCHEDULING: 

Another extremely important optimization of the final code generator is 

instruction scheduling. Because many machines, including most RISC architectures, 

have some sort of pipelining capability, effectively harnessing that capability requires 

judicious ordering of instructions. 

In MIPS, each instruction is issued in one cycle, but some take multiple cycles to 

complete. It takes an additional cycle before the value of a load is available and two 

cycles for a branch to reach its destination, but an instruction can be placed in the 

"delay slot" after a branch and executed in that slack time. On the left is one 

arrangement of a set of instructions that requires 7 cycles. It assumes no hardware 

interlock and thus explicitly stalls between the second and third slots while the load 

completes and has a Dead cycle after the branch because the delay slot holds a noop. 

On the right, a more favorable rearrangement of the same instructions will execute in 5 

cycles with no dead Cycles. 

lw $t2, 
4($fp) lw $t3, 
8($fp) noop 
add $t4, $t2, 
$t3 subi $t5, 
$t5, 1 goto L1 
noop 

lw $t2, 4($fp) 

lw $t3, 8($fp) 

subi $t5, $t5, 1 

goto L1 

add $t4, $t2, $t3 

 

PEEPHOLE OPTIMIZATIONS: 

Peephole optimization is a pass that operates on the target assembly and only 



 

 

considers a few instructions at a time (through a "peephole") and attempts to do simple, 

machine dependent 



Department of Computer Science & Engineering Course File : Compiler Design 
 

 

 

 

code improvements. For example, peephole optimizations might include elimination of 

multiplication by 1, elimination of load of a value into a register when the previous 

instruction stored that value from the register to a memory location, or replacing a 

sequence of instructions by a single instruction with the same effect. Because of its 

myopic view, a peephole optimizer does not have the potential payoff of a full-scale 

optimizer, but it can significantly improve code at a very local level and can be useful for 

cleaning up the final code that resulted from more complex optimizations. Much of the 

work done in peephole optimization can be though of as find-replace activity, looking for 

certain idiomatic patterns in a single or sequence of two to three Instructions than can be 

replaced by more efficient alternatives. 

For example, MIPS has instructions that can add a small integer constant to the 

value in a register without loading the constant into a register first, so the sequence on 

the left can be replaced with that on the right: 

li $t0, 10 

lw $t1, -8($fp) 

add $t2, $t1, 

$t0 sw $t1, -

8($fp) 

lw $t1, -8($fp) 

addi $t2, $t1, 

10 sw $t1, -

8($fp) 

What would you replace the following sequence 

with? lw $t0, -8($fp) 

sw $t0, -8($fp) 

What about this 

one? mul $t1, $t0, 

2 

 

Abstract Syntax Tree/DAG : Is nothing but the condensed form of a parse tree and is 

 . Useful for representing language constructs 

 . Depicts the natural hierarchical structure of the source program 

 

- Each internal node represents an operator 
- Children of the nodes represent operands 
- Leaf nodes represent operands 

 
.DAG is more compact than abstract syntax tree because common sub expressions are 

eliminated A syntax tree depicts the natural hierarchical structure of a source program. 

Its structure has already been discussed in earlier lectures. DAGs are generated as a 

combination of trees: operands that are being reused are linked together, and nodes 

may be annotated with variable names (to denote assignments). This way, DAGs are 

highly compact, since they eliminate local common sub-expressions. On the other hand, 
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they are not so easy to optimize, since they are more specific tree forms. However, it 

can be seen that proper building of DAG for a given 
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sequence of instructions can compactly represent the outcome of the 

calculation. An example of a syntax tree and DAG has been given in the 

next slide . 

a := b * -c + b * -c 
 

 

 
You can see that the node " * " comes only once in the DAG as well as the leaf " b 
", but the meaning conveyed by both the representations (AST as well as the DAG) 
remains the same. 
 
 

GLOBAL OPTIMIZATIONS, DATA-FLOW ANALYSIS 
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So far we were only considering making changes within one basic block. With 

some additional analysis, we can apply similar optimizations across basic blocks, 

making them global optimizations. It‘s worth pointing out that global in this case does 

not mean across the entire program. We usually only optimize one function at a time. 

Interprocedural analysis is an even larger task, one not even attempted by some 

compilers. The additional analysis the optimizer must do to perform optimizations across 

basic blocks is called data-flow analysis. Data-flow analysis is much more complicated 

than control-flow analysis. 

Let‘s consider a global common sub-expression elimination optimization as our 

example. Careful analysis across blocks can determine whether an expression is alive 

on entry to a block. Such an expression is said to be available at that point. 

Once the set of available expressions is known, common sub-expressions can 

be eliminated on a global basis. Each block is a node in the flow graph of a program. 

The successor set (succ(x)) for a node x is the set of all nodes that x directly flows into. 

The predecessor set (pred(x)) for a node x is the set of all nodes that flow directly into x. 

An expression is defined at the point where it is assigned a value and killed when one of 

its operands is subsequently assigned a new value. An expression is available at some 

point p in a flow graph if every path leading to p contains a prior definition of that 

expression which is not 

subsequently killed. 

 
avail[B] = set of expressions available on entry to block B 
exit[B] = set of expressions available on exit from B 

avail[B] = ∩ exit[x]: x ∈ pred[B] (i.e. B has available the intersection of the 
exit of its predecessors) 

killed[B] = set of the expressions killed in B 

defined[B] = set of expressions defined in B 

exit[B] = avail[B] - killed[B] + defined[B] 

avail[B] = ∩ (avail[x] - killed[x] + defined[x]) : x ∈ pred[B] 

 

Here is an algorithm for global common sub-expression elimination: 

1) First, compute defined and killed sets for each basic block (this does not involve any of 

its redecessors or successors). 

2) Iteratively compute the avail and exit sets for each block by running the following 

algorithm until you hit a stable fixed point: 

a) Identify each statement s of the form a = b op c in some block B such that b op c 

is available at the entry to B and neither b nor c is redefined in B prior to s. 

b) Follow flow of control backward in the graph passing back to but not through 

each block that defines b op c. The last computation of b op c in such a block reaches 

s. 

c) After each computation d = b op c identified in step 2a, add statement t = d to 

that block where t is a new temp. 

d) Replace s by a = t. 



Department of Computer Science & Engineering Course File : Compiler Design 
 

 

Lets try an example to make things 
clearer: main: 
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BeginFunc 
28; b = a + 2 ; 
c = 4 * b ; 
tmp1 = b < 
c; 
ifNZ tmp1 goto L1 
; b = 1 ; 
L1: 
d = a + 2 
; 
EndFunc 
; 

 
First, divide the code above into basic blocks. Now calculate the available 

expressions for each block. Then find an expression available in a block and perform 
step 2c above. 
What common subexpression can you share between the two blocks? What if 
the above code were: 
main: 
BeginFunc 
28; b = a + 2 ; 
c = 4 * b ; 
tmp1 = b < c 
; 
IfNZ tmp1 Goto L1 
; b = 1 ; 
z = a + 2 ; <========= an additional line 
here L1: 
d = a + 2 
; 
EndFunc 
; 

 

Common Sub expression Elimination 
Two operations are common if they produce the same result. In such a case, it is 

likely more efficient to compute the result once and reference it the second time rather 
than re-evaluate it. An expression is alive if the operands used to compute the 
expression have not been changed. An expression that is no longer alive is dead. 

 
main() 
{ 
int x, y, z; 
x = (1+20)* -x; 
y = x*x+(x/y); 
y = z = (x/y)/(x*x); 
} 
straight 
translation: tmp1 
= 1 + 20 ; tmp2 = 
-x ; 
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x = tmp1 * tmp2 
; tmp3 = x * x ; 
tmp4 = x / y ; 
y = tmp3 + tmp4 ; 
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tmp5 = x / y 
; tmp6 = x * x 
; 
z = tmp5 / tmp6 
; y = z ; 

 
What sub-expressions can be eliminated? How can valid common sub-expressions (live 

ones) be determined? Here is an optimized version, after constant folding and 

propagation and elimination of common sub-expressions: 

tmp2 = -x ; 
x = 21 * tmp2 
; tmp3 = x * x ; 
tmp4 = x / y ; 
y = tmp3 + tmp4 
; tmp5 = x / y ; 
z = tmp5 / tmp3 
; y = z ; 

 
Induction Variable Elimination 

Constant folding refers to the evaluation at compile-time of expressions whose 

operands are known to be constant. In its simplest form, it involves determining that all 

of the operands in an expression are constant-valued, performing the evaluation of the 

expression at compile-time, and then replacing the expression by its value. If an 

expression such as 10 + 2 * 3 is encountered, the compiler can compute the result at 

compile-time (16) and emit code as if the input contained the result rather than the 

original expression. Similarly, constant conditions, such as a conditional branch if a < b 

goto L1 else goto L2 where a and b are constant can be replaced by a Goto L1 or 

Goto L2 depending on the truth of the expression evaluated at compile-time. The 

constant expression has to be evaluated at least once, but if the compiler does it, it 

means you don‘t have to do it again as needed during runtime. One thing to be careful 

about is that the compiler must obey the grammar and semantic rules from the source 

language that apply to expression evaluation, which may not necessarily match the 

language you are writing the compiler in. (For example, if you were writing an APL 

compiler, you would need to take care that you were respecting its Iversonian 

precedence rules). It should also respect the expected treatment of any exceptional 

conditions (divide by zero, over/underflow). Consider the Decaf code on the far left and 

its un optimized TAC translation in the middle, which is then transformed by constant-

folding on the far right: 

a = 10 * 5 + 6 - b; _tmp0 = 10 ; 
_tmp1 = 5 ; 

_tmp2 = _tmp0 * _tmp1 ; 
_tmp3 = 6 ; 
_tmp4 = _tmp2 + _tmp3 ; 
_tmp5 = _tmp4 – 
b; a = _tmp5 ; 
_tmp0 = 56 ; _tmp1 = _tmp0 – b ; a = _tmp1 ; 



  
 

 

 
 
 

Constant-folding is what allows a language to accept constant expressions where a 

constant is required (such as a case label or array size) as in these C language 

examples: 

 
int arr[20 * 4 + 

3]; switch (i) { 

case 10 * 5: ... 

} 

In both snippets shown above, the expression can be resolved to an integer constant at 

compile time and thus, we have the information needed to generate code. If either 

expression involved a variable, though, there would be an error. How could you rewrite 

the grammar to allow the grammar to do constant folding in case statements? This 

situation is a classic example of the gray area between syntactic and semantic analysis. 

 

Live Variable Analysis 

A variable is live at a certain point in the code if it holds a value that may be 
needed in the future. 
Solve backwards: 
Find use of a variable This variable is live between statements that have found 
use as next statement Recursive until you find a definition of the variable 

Using the sets use[B]and de f[B] 

 
de f[B] is the set of variables assigned values in B prior to any use of that variable in 

B use [B] is the set of variables whose values may be used in [B] prior to any definition 
of the variable. 

 
A variable comes live into a block (in in[B]), if it is either used before redefinition of 

it is live coming out of the block and is not redefined in the block .A variable comes live 
out of a block (in out[B]) if and only if it is live coming into one of its successors 

In[B]=use[B] U (out[B]-de f[B]) 

Out[B]= U in[s] 

S succ[B] 
 

Note the relation between reaching-definitions equations: the roles of in and out are 
interchanged 

 
Copy Propagation 

This optimization is similar to constant propagation, but generalized to non-

constant values. If we have an assignment a = b in our instruction stream, we can 

replace later occurrences of a with b (assuming there are no changes to either variable 

in-between). Given the way we generate TAC code, this is a particularly valuable 



  
 

 

optimization since it is able to 



  
 

 

 

 

eliminate a large number of instructions that only serve to copy values from one 

variable to another. The code on the left makes a copy of tmp1 in tmp2 and a copy of 

tmp3 in tmp4. In the optimized version on the right, we eliminated those unnecessary 

copies and propagated the original variable into the later uses: 

tmp2 = tmp1 ; 
tmp3 = tmp2 * 
tmp1; tmp4 = tmp3 
; 
tmp5 = tmp3 * tmp2 
; c = tmp5 + tmp4 ; 
tmp3 = tmp1 * tmp1 
; tmp5 = tmp3 * 
tmp1 ; c = tmp5 + 
tmp3 ; 

We can also drive this optimization "backwards", where we can recognize that the 
original assignment made to a temporary can be eliminated in favor of direct 
assignment to the final goal: tmp1 = LCall _Binky ; 
a = tmp1; 
tmp2 = LCall _Winky 
; b = tmp2 ; 
tmp3 = a * b 
; c = tmp3 ; 
a = LCall 
_Binky; b = LCall 
_Winky; c = a * b 
; 
 

CODE GENERATION: 

 

The code generator generates target code for a sequence of three-address 

statement. It considers each statement in turn, remembering if any of the operands of 

the statement are currently in registers, and taking advantage of that fact, if possible. 

The code-generation uses descriptors to keep track of register contents and addresses 

for names. 

 

1. A register descriptor keeps track of what is currently in each register. It is consulted 

whenever a new register is needed. We assume that initially the register descriptor shows that 

all registers are empty. (If registers are assigned across blocks, this would not be the case). As 

the code generation for the block progresses, each register will hold the value of zero or 

more names at any given time. 

 

2. An address descriptor keeps track of the location (or locations) where the current value of 

the name can be found at run time. The location might be a register, a stack location, a memory 

address, or some set of these, since when copied, a value also stays where it was. This 

information can be stored in the symbol table and is used to determine the accessing method 

for a name. 



  
 

 

 

CODE GENERATION ALGORITHM : 

 

for each X = Y op Z do 

 

- Invoke a function getreg to determine location L where X must be stored. Usually L is a 
register. 

- Consult address descriptor of Y to determine Y'. Prefer a register for Y'. If value of Y not 
already in L generate 

 
Mov Y', L 

 

- Generat

e op Z', L 



  
 

 

 

 

Again prefer a register for Z. Update address descriptor of X to indicate X is in L. If L is 

a register update its descriptor to indicate that it contains X and remove X from all other 

register descriptors. 

 
. If current value of Y and/or Z has no next use and are dead on exit from block 

and are in registers, change register descriptor to indicate that they no longer 

contain Y and/or Z. 

 

The code generation algorithm takes as input a sequence of three-address statements 

constituting a basic block. For each three-address statement of the form x := y op z we 

perform the following actions: 

 
1. Invoke a function getreg to determine the location L where the result of the 

computation y op z should be stored. L will usually be a register, but it could also be a 

memory location. We shall describe getreg shortly. 

 
2. Consult the address descriptor for u to determine y', (one of) the current location(s) of 

y. Prefer the register for y' if the value of y is currently both in memory and a 

register. If the value of u is not already in L, generate the instruction MOV y', L to 

place a copy of y in L. 

 
3. Generate the instruction OP z', L where z' is a current location of z. Again, prefer a 

register to a memory location if z is in both. Update the address descriptor to indicate 

that x is in location L. If L is a register, update its descriptor to indicate that it contains 

the value of x, and remove x from all other register descriptors. 

 

4. If the current values of y and/or y have no next uses, are not live on exit from the 

block, and are in registers, alter the register descriptor to indicate that, after execution 

of x := y op z, those registers no longer will contain y and/or z, respectively. 

 

FUNCTION getreg: 

 

1. If Y is in register (that holds no other values) and Y is not live and has no next use after 
X = Y op Z 

then return register of Y for L. 

2. Failing (1) return an empty register 
3. Failing (2) if X has a next use in the block or op requires register then get a register R, store its 

content into M (by Mov R, M) and use it. 
4. Else select memory location X as L 

 
The function getreg returns the location L to hold the value of x for the assignment x := y op z. 

 
1. If the name y is in a register that holds the value of no other names (recall that copy 
instructions such as x := y could cause a register to hold the value of two or more 
variables 



  
 

 

 
 

simultaneously), and y is not live and has no next use after execution of x := y op z, 
then return the register of y for L. Update the address descriptor of y to indicate that y is 
no longer in L. 

 

2. Failing (1), return an empty register for L if there is one. 
 

3. Failing (2), if x has a next use in the block, or op is an operator such as indexing, that requires 
a register, find an occupied register R. Store the value of R into memory location (by MOV R, 
M) if it is not already in the proper memory location M, update the address descriptor M, and 
return R. If R holds the value of several variables, a MOV instruction must be generated for each 
variable that needs to be stored. A suitable occupied register might be one whose datum is 
referenced furthest in the future, or one whose value is also in memory. 

 
4. If x is not used in the block, or no suitable occupied register can be found, select the memory 

location of x as L. 

 
Example : 

Stmt 

 
code 

 
reg desc 

 
addr desc 

t 1 =a-b mov a,R 0 

sub b,R 0 

R 0 contains t 1 t 1 in R0 

t2 =a-c mov a,R 1 

sub c,R1 

R0 contains t 1 

R 1 contains t2 

t1 in R0 

t 2 in R1 

t3 =t1 +t 2 add R 1 ,R0 R 0contains t3 

R 1 contains t2 

t3 in R 0 

t 2 in R1 

d=t3 +t2 add R 1 ,R 0 

mov R 0 ,d 

R 0contains d d in R0 

d in R0 and 

   memory 

 
For example, the assignment d := (a - b) + (a - c) + (a - c) might be translated into the 
following three- address code sequence: 
t1 = a - 

b t 2 = a 

- c 

t 3 = t 1 + 

t2 d = t 3 + 

t2 

The code generation algorithm that we discussed would produce the code sequence as 
shown. Shown alongside are the values of the register and address descriptors as code 
generation progresses. 

 



  
 

 

DAG for Register allocation: 



  
 

 

 
 

DAG (Directed Acyclic Graphs) are useful data structures for implementing 

transformations on basic blocks. A DAG gives a picture of how the value computed by a 

statement in a basic block is used in subsequent statements of the block. Constructing a 

DAG from three-address statements is a good way of determining common sub-

expressions (expressions computed more than once) within a block, determining which 

names are used inside the block but evaluated outside the block, and determining which 

statements of the block could have their computed value used outside the block. 

 
A DAG for a basic block is a directed cyclic graph with the following labels on nodes: 

 

1. Leaves are labeled by unique identifiers, either variable names or constants. From the 
operator applied to a name we determine whether the l-value or r-value of a name is needed; 
most leaves represent r- values. The leaves represent initial values of names, and we subscript 
them with 0 to avoid confusion with labels denoting "current" values of names as in (3) below. 

 

2. Interior nodes are labeled by an operator symbol. 
 

3. Nodes are also optionally given a sequence of identifiers for labels. The intention is 
that interior nodes represent computed values, and the identifiers labeling a node are deemed 
to have that value. 

 
DAG representation Example: 

 
 

 

For example, the slide shows a three-address code. The corresponding DAG is shown. 

We observe that each node of the DAG represents a formula in terms of the leaves, that 

is, the values possessed by variables and constants upon entering the block. For 

example, the node labeled t 4 represents the formula 

 
b[4 * i] 



  
 
 

 

 
 

that is, the value of the word whose address is 4*i bytes offset from address b, 
which is the intended value of t 4 . 

 
Code Generation from DAG 

 
S 1= 4 * i S 1 = 4 * i 

S2 = addr(A)-4 S 2 = addr(A)-4 

S3 = S 2 [S 1 ] S 3 = S2 [S 1 ] 

S 4 = 4 * i 

S5 = addr(B)-4 S 5= addr(B)-4 

S 6 = S 5 [S4 ] S6 = S5 [S 4 ] 

S7 = S 3 * S6 S 7 = S3 * S 6 

S8 = prod+S7 

prod = S8 prod = prod + S 7 

S9 = I+1 

I = S9 I = I + 1 

If I <= 20 goto (1) If I <= 20 goto (1) 

 
We see how to generate code for a basic block from its DAG representation. The 

advantage of doing so is that from a DAG we can more easily see how to rearrange the 

order of the final computation sequence than we can starting from a linear sequence of 

three-address statements or quadruples. If the DAG is a tree, we can generate code 

that we can prove is optimal under such criteria as program length or the fewest number 

of temporaries used. The algorithm for optimal code generation from a tree is also 

useful when the intermediate code is a parse tree. 

 
Rearranging order of the code 

 

Consider following basic block : 

 
t 1 = a + b t 

2 = c + d t 

3 = e -t 2 

X = t 1 -t 3 

 
 



  
 
 

 

and its DAG given here. 



 
 

 

 
 

Here, we briefly consider how the order in which computations are done can 

affect the cost of resulting object code. Consider the basic block and its corresponding 

DAG representation as shown in the slide. 

 
Rearranging order . 

 

 

Three adress code for the 

DAG (assuming only two 

registers are 

available) 

Rearranging the code 

as t2 = c + d 

t3 = e -t 2 

 
t1 = a + b 
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MOV a, R0 X = t 1 -t3 

ADD b, R0 gives 

MOV c, R 1 MOV c, R 0 

ADD d, R 1 ADD d, R 0 

MOV R0 , t1 Register spilling MOV e, R 1 

MOV e, R0 SUB R 0 , R1 

SUB R 1 , R0 MOV a, R 0 

MOV t1 , R 1 Register reloading ADD b, R0 

SUB R 0 , R1 SUB R 1 , R0 

MOV R1 , X MOV R 1 , X 

 

 
If we generate code for the three-address statements using the code generation 

algorithm described before, we get the code sequence as shown (assuming two 

registers R0 and R1 are available, and only X is live on exit). On the other hand 

suppose we rearranged the order of the statements so that the computation of t 1 

occurs immediately before that of X as: 

 
t2 = c + 

d t3 = e -t 

2 t1 = a + 

b X = t 1 

-t3 

 
Then, using the code generation algorithm, we get the new code sequence as shown 

(again only R0 and R1 are available). By performing the computation in this order, 

we have been able to save two instructions; MOV R0, t 1 (which stores the value of R0 

in memory location t 1 ) and MOV t 1 , R1 (which reloads the value of t 1 in the register 

R1). 

CODE GENERATION: 

 

The code generator generates target code for a sequence of three-address 

statement. It considers each statement in turn, remembering if any of the operands of 

the statement are currently in registers, and taking advantage of that fact, if possible. 

The code-generation uses descriptors to keep track of register contents and addresses 

for names. 

 

3. A register descriptor keeps track of what is currently in each register. It is consulted 
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whenever a new register is needed. We assume that initially the register descriptor shows that 

all registers are empty. (If registers are assigned across blocks, this would not be the case). As 

the code generation for the block progresses, each register will hold the value of zero or 

more names at any given time. 

 

4. An address descriptor keeps track of the location (or locations) where the current value of 

the name can be found at run time. The location might be a register, a stack location, a memory 

address, or some set of these, since when copied, a value also stays where it was. This 

information can be stored in the symbol table and is used to determine the accessing method 

for a name. 

 

CODE GENERATION ALGORITHM : 

 

for each X = Y op Z do 

 

- Invoke a function getreg to determine location L where X must be stored. Usually L is a 
register. 

- Consult address descriptor of Y to determine Y'. Prefer a register for Y'. If value of Y not 
already in L generate 

 
Mov Y', L 

 

- Generat

e op Z', L 
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Again prefer a register for Z. Update address descriptor of X to indicate X is in L. If L is 

a register update its descriptor to indicate that it contains X and remove X from all other 

register descriptors. 

 
. If current value of Y and/or Z has no next use and are dead on exit from block 

and are in registers, change register descriptor to indicate that they no longer 

contain Y and/or Z. 

 

The code generation algorithm takes as input a sequence of three-address statements 

constituting a basic block. For each three-address statement of the form x := y op z we 

perform the following actions: 

 
5. Invoke a function getreg to determine the location L where the result of the 

computation y op z should be stored. L will usually be a register, but it could also be a 

memory location. We shall describe getreg shortly. 

 
6. Consult the address descriptor for u to determine y', (one of) the current location(s) of 

y. Prefer the register for y' if the value of y is currently both in memory and a 

register. If the value of u is not already in L, generate the instruction MOV y', L to 

place a copy of y in L. 

 
7. Generate the instruction OP z', L where z' is a current location of z. Again, prefer a 

register to a memory location if z is in both. Update the address descriptor to indicate 

that x is in location L. If L is a register, update its descriptor to indicate that it contains 

the value of x, and remove x from all other register descriptors. 

 

8. If the current values of y and/or y have no next uses, are not live on exit from the 

block, and are in registers, alter the register descriptor to indicate that, after execution 

of x := y op z, those registers no longer will contain y and/or z, respectively. 

 

FUNCTION getreg: 

 

5. If Y is in register (that holds no other values) and Y is not live and has no next use after 
X = Y op Z 

then return register of Y for L. 

6. Failing (1) return an empty register 
7. Failing (2) if X has a next use in the block or op requires register then get a register R, store its 

content into M (by Mov R, M) and use it. 
8. Else select memory location X as L 

 
The function getreg returns the location L to hold the value of x for the assignment x := y op z. 

 
5. If the name y is in a register that holds the value of no other names (recall that copy 
instructions such as x := y could cause a register to hold the value of two or more 
variables 
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simultaneously), and y is not live and has no next use after execution of x := y op z, 
then return the register of y for L. Update the address descriptor of y to indicate that y is 
no longer in L. 

 

6. Failing (1), return an empty register for L if there is one. 
 

7. Failing (2), if x has a next use in the block, or op is an operator such as indexing, that requires 
a register, find an occupied register R. Store the value of R into memory location (by MOV R, 
M) if it is not already in the proper memory location M, update the address descriptor M, and 
return R. If R holds the value of several variables, a MOV instruction must be generated for each 
variable that needs to be stored. A suitable occupied register might be one whose datum is 
referenced furthest in the future, or one whose value is also in memory. 

 
8. If x is not used in the block, or no suitable occupied register can be found, select the memory 

location of x as L. 

 
Example : 

Stmt 

 
code 

 
reg desc 

 
addr desc 

t 1 =a-b mov a,R 0 

sub b,R 0 

R 0 contains t 1 t 1 in R0 

t2 =a-c mov a,R 1 

sub c,R1 

R0 contains t 1 

R 1 contains t2 

t1 in R0 

t 2 in R1 

t3 =t1 +t 2 add R 1 ,R0 R 0contains t3 

R 1 contains t2 

t3 in R 0 

t 2 in R1 

d=t3 +t2 add R 1 ,R 0 

mov R 0 ,d 

R 0contains d d in R0 

d in R0 and 

   memory 

 
For example, the assignment d := (a - b) + (a - c) + (a - c) might be translated into the 
following three- address code sequence: 
t1 = a - 

b t 2 = a 

- c 

t 3 = t 1 + 

t2 d = t 3 + 

t2 

The code generation algorithm that we discussed would produce the code sequence as 
shown. Shown alongside are the values of the register and address descriptors as code 
generation progresses. 
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DAG for Register allocation: 
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DAG (Directed Acyclic Graphs) are useful data structures for implementing 

transformations on basic blocks. A DAG gives a picture of how the value computed by a 

statement in a basic block is used in subsequent statements of the block. Constructing a 

DAG from three-address statements is a good way of determining common sub-

expressions (expressions computed more than once) within a block, determining which 

names are used inside the block but evaluated outside the block, and determining which 

statements of the block could have their computed value used outside the block. 

 
A DAG for a basic block is a directed cyclic graph with the following labels on nodes: 

 

1. Leaves are labeled by unique identifiers, either variable names or constants. From the 
operator applied to a name we determine whether the l-value or r-value of a name is needed; 
most leaves represent r- values. The leaves represent initial values of names, and we subscript 
them with 0 to avoid confusion with labels denoting "current" values of names as in (3) below. 

 

2. Interior nodes are labeled by an operator symbol. 
 

3. Nodes are also optionally given a sequence of identifiers for labels. The intention is 
that interior nodes represent computed values, and the identifiers labeling a node are deemed 
to have that value. 

 
DAG representation Example: 

 
 

 

For example, the slide shows a three-address code. The corresponding DAG is shown. 

We observe that each node of the DAG represents a formula in terms of the leaves, that 

is, the values possessed by variables and constants upon entering the block. For 

example, the node labeled t 4 represents the formula 

 
b[4 * i] 
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that is, the value of the word whose address is 4*i bytes offset from address b, 
which is the intended value of t 4 . 

 
Code Generation from DAG 

 
S 1= 4 * i S 1 = 4 * i 

S2 = addr(A)-4 S 2 = addr(A)-4 

S3 = S 2 [S 1 ] S 3 = S2 [S 1 ] 

S 4 = 4 * i 

S5 = addr(B)-4 S 5= addr(B)-4 

S 6 = S 5 [S4 ] S6 = S5 [S 4 ] 

S7 = S 3 * S6 S 7 = S3 * S 6 

S8 = prod+S7 

prod = S8 prod = prod + S 7 

S9 = I+1 

I = S9 I = I + 1 

If I <= 20 goto (1) If I <= 20 goto (1) 

 
We see how to generate code for a basic block from its DAG representation. The 

advantage of doing so is that from a DAG we can more easily see how to rearrange the 

order of the final computation sequence than we can starting from a linear sequence of 

three-address statements or quadruples. If the DAG is a tree, we can generate code 

that we can prove is optimal under such criteria as program length or the fewest number 

of temporaries used. The algorithm for optimal code generation from a tree is also 

useful when the intermediate code is a parse tree. 

 
Rearranging order of the code 

 

Consider following basic block : 

 
t 1 = a + b t 

2 = c + d t 

3 = e -t 2 

X = t 1 -t 3 

 
 

and its DAG given here. 
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Here, we briefly consider how the order in which computations are done can 

affect the cost of resulting object code. Consider the basic block and its corresponding 

DAG representation as shown in the slide. 

 
Rearranging order . 

 

 

Three adress code for the 

DAG (assuming only two 

registers are 

available) 

Rearranging the code 

as t2 = c + d 

t3 = e -t 2 

 
t1 = a + b 
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MOV a, R0 X = t 1 -t3 

ADD b, R0 gives 

MOV c, R 1 MOV c, R 0 

ADD d, R 1 ADD d, R 0 

MOV R0 , t1 Register spilling MOV e, R 1 

MOV e, R0 SUB R 0 , R1 

SUB R 1 , R0 MOV a, R 0 

MOV t1 , R 1 Register reloading ADD b, R0 

SUB R 0 , R1 SUB R 1 , R0 

MOV R1 , X MOV R 1 , X 

 

 
If we generate code for the three-address statements using the code generation 

algorithm described before, we get the code sequence as shown (assuming two 

registers R0 and R1 are available, and only X is live on exit). On the other hand 

suppose we rearranged the order of the statements so that the computation of t 1 

occurs immediately before that of X as: 

 
t2 = c + d 

 t3 = e -t 2 

 t1 = a + b  

X = t 1 -t3 

 
Then, using the code generation algorithm, we get the new code sequence as 

shown (again only R0 and R1 are available). By performing the computation in 

this order, we have been able to save two instructions; MOV R0, t 1 (which stores 

the value of R0 in memory location t 1 ) and MOV t 1 , R1 (which reloads the value 

of t 1 in the register R1). 
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