

We take great pleasure in presenting our diligently prepared course notes on artificial

intelligence, where we have devoted our best efforts. Throughout this endeavor, we have

ventured into exploring diverse AI concepts. The central concept that binds everything

together in this study is that of an intelligent agent. In this context, Artificial Intelligence

(AI) is defined as the exploration of agents capable of receiving information from their

surroundings and taking actions accordingly. Each agent is equipped with a function that

translates sequences of received information (percepts) into appropriate actions, and we

delve into various methods of representing these functions.

We emphasize the significance of learning in expanding the capabilities of an agent beyond

familiar environments. This expansion poses challenges for agent design, favoring explicit

knowledge representation and reasoning. Throughout this course, we shed light on how

learning impacts agent design and the importance of accommodating it effectively.

Primarily tailored as a fundamental resource for students studying AI courses, these course

notes aim to serve as a primary reference for delving into the world of intelligent agents,

their functions, and the dynamics of AI in different environments.

Course Notes Structure:

The course note has four Parts:

 Artificial intelligence

 Problem solving

 Knowledge and reasoning

 Uncertain Knowledge and reasoning

Unit1 Introduction to Artificial Intelligence: It provides a comprehensive overview of the

historical development, foundational principles, and real-world applications of AI. The focal

point is on intelligent agents - sophisticated systems capable of making decisions and

subsequently executing actions based on their understanding.

Problem solving agents: It centers on a diverse range of search techniques aimed at tackling

the complexities of decision-making, especially in navigation scenarios that demand

thinking several steps ahead. In this unit various searching techniques for problem solving

are uniformed search strategies, informed search strategies.

Unit II Beyond Classical Search: This unit investigates the various algorithm, which

performs purely local search in the state space, evaluating and modifying one or more

current states rather than systematically exploring paths from an initial state. These

algorithms are suitable for problems in which the path cost is irrelevant and all that matters

is the solution state itself.

Constraint satisfaction problems, Whose states and goal test conform to a standard,

structures and very simple representation.

Unit III Propositional logic: This unit examines about the knowledge-based agents. The

representation of knowledge and the reasoning processes which brings knowledge to the

entire field of AI. Here we also portray the simple logic called propositional logic.

Unit IV First-order logic: Which is sufficiently expressive to represent a good deal of our

commonsense knowledge. This unit examines the representation languages in general and

also covers the syntax and semantics of first – order logic.

Inference in first order logic: This unit introduces the inference rules for quantifiers and

also shows how to reduce the first order inference to propositional inference.

Unit-V knowledge representation: It introduces the idea of general ontology, which

organizes everything in the world into a hierarchy of categories. It also shows the

representations of actions, basic categories of objects and substances and also cover the

specialized reasoning systems for representing uncertain and changing knowledge.

Quantifying Uncertainty: This module focuses on the principles of reasoning and decision-

making when confronted with uncertain situations in the world.

UNIT I:

Introduction: Intelligent Systems, Foundations of AI and its history, Sub areas of AI

and its applications. Solving Problems by Searching: Problem-Solving Agents,

Searching for Solutions, Uninformed Search Strategies: Breadth-first search, Uniform

cost search, Depth-first search, Iterative deepening Depth-first search, Bidirectional

search, Informed (Heuristic) Search Strategies: Greedy best-first search, A* search,

Heuristic Functions.

1 Introduction:

⮚ Artificial Intelligence is concerned with the design of intelligence in an

artificial device.

⮚ Artificial intelligence comprehends intelligent beings moreover it is capable

of constructing intelligent entities.

⮚ The goal of AI is to perform tasks, recognize patterns, and make decisions

akin to human judgment.

⮚ Intelligence is the ability to acquire, understand and apply the knowledge to

achieve goals in the world.

⮚ The definition of artificial intelligence encompasses two primary dimensions:

thought processes and reasoning, as well as behavior. Although there is no

clear definition of AI or even Intelligence, it can be described as an attempt to

build machines that like humans can think and act, able to learn and use

knowledge to solve problems on their own.

The term was coined by John McCarthy in 1956. His definition is ―It is the

Science and Engineering of making intelligent machines, especially

intelligent computer programs.‖

⮚ AI is the study of the mental faculties through the use of computational

models

⮚ AI is the study of intellectual/mental processes as computational processes.

⮚ AI program will demonstrate a high level of intelligence to a degree that

equals or exceeds the intelligence required of a human in performing some

task.

⮚ AI is unique, sharing borders with Mathematics, Computer Science,

Philosophy, Psychology, Biology, Cognitive Science and many others.

2. Foundations of Artificial Intelligence:

A brief history of the disciplines that contributed ideas, viewpoints, and

techniques to AI are as follows:

2.1 Philosophy(the study of the fundamental nature of knowledge):

⮚ Can formal rules be used to draw valid conclusions?

⮚ How does the mind arise from a physical brain?

⮚ Where does knowledge come from?

⮚ How does knowledge lead to action?

● Aristotle (384–322 B.C.), was the first to formulate a precise set of laws

governing the rational part of the mind. He developed an informal system of

syllogisms for proper reasoning, which in principle allowed one to generate

conclusions mechanically, given initial premises.

Eg.

all dogs are animals;

all animals have four legs;

therefore all dogs have four legs

 Thomas Hobbes (1588–1679) proposed that reasoning was like numerical

computation that ―we add and subtract in our silent thoughts.‖

 Rene Descartes (1596–1650) gave the first clear discussion of the distinction

between mind and matter and of the problems that arise.

 The empiricism movement, starting with Francis Bacon's (1561— 1626).

 The confirmation theory of Carnap and Carl Hempel (1905-1997) attempted

to analyze the acquisition of knowledge from experience.

 Carnap's book The Logical Structure of the World (1928) defined an explicit

computational procedure for extracting knowledge from elementary

experiences. It was probably the first theory of mind as a computational

process.

 The final element in the philosophical picture of the mind is the connection

between knowledge and action. This question is vital to Al because

intelligence requires action as well as reasoning.

2.2 Mathematics 

● What are the formal rules to draw valid conclusions?

● What can be computed?

Formal science required a level of mathematical formalization in three fundamental

areas: logic, computation, and probability.

Logic: George Boole (1815–1864), who worked out the details of propositional, or

Boolean, logic.

In 1879, Gottlob Frege (1848–1925) extended Boole‘s logic to include objects and

relations, creating the firstorder logic that is used today.

First order logic – Contains predicates, quantifiers and variables

E.g. Philosopher(a) ⇒ Scholar(a)

∀x, effect_carona(x) ⇒ quarantine(x)

∀x, King(x) ^ Greedy (x) ⇒ Evil (x)

Alfred Tarski (1902–1983) introduced a theory of reference that shows how to relate

the objects in a logic to objects in the real world.

Logic and Computation: The first nontrivial algorithm is thought to be Euclid‘s

algorithm for computing greatest common divisors(GCD).

 Beside logic and computation, the third great contribution of

mathematics to AI is the probability. The Italian Gerolamo Cardanao

(1501-1576) first framed the idea of probability, describing it in terms of

the possible outcomes of gambling events.

 Thomas Bayes (1702-1761) proposed a rule for updating probabilities in

the light of new evidence. Baye‘s rule underlies most modern approaches

to uncertain reasoning in AI systems.

2.3 Economics

● How should we make decisions so as to maximize payoff?

● How should we do this when the payoff may be far in the future?

● The science of economics got its start in 1776, when Scottish philosopher

Adam Smith treat it as a science, using the idea that economies can be thought

of as consisting of individual agents maximizing their own economic well

being.

● Decision theory, which combines probability theory with utility theory,

provides a formal and complete framework for decisions (economic or

otherwise) made under uncertainty— that is, in cases where probabilistic

descriptions appropriately capture the decision maker‘s environment.

● Von Neumann and Morgenstern‘s development of game theory included the

surprising result that, for some games, a rational agent should adopt policies

that are randomized. Unlike decision theory, game theory does not offer an

unambiguous prescription for selecting actions.

2.4 Neuroscience:

● How do brain process information?

● Neuroscience is the study of the nervous system, particularly the brain.

● 335 B.C. Aristotle wrote, "Of all the animals, man has the largest brain in

proportion to his size."

● Nicolas Rashevsky (1936, 1938) was the first to apply mathematical models to

the study of the nervous system.

Fig. A neuron cell of human brain.

● The measurement of intact brain activity began in 1929 with the invention by

Hans Berger of the electroencephalograph (EEG).

● The recent development of functional magnetic resonance imaging (fMRI)

(Ogawa et al., 1990; Cabeza and Nyberg, 2001) is giving neuroscientists

unprecedentedly detailed images of brain activity, enabling measurements that

correspond in interesting ways to ongoing cognitive processes.

2.5 Psychology:

● How do humans and animals think and act?

● Behaviorism movement, led by John Watson(1878-1958). Behaviorists insisted

on studying only objective measures of the percepts(stimulus) given to an

animal and its resulting actions(or response). Behaviorism discovered a lot

about rats and pigeons but had less success at understanding human.

● Cognitive psychology, views the brain as an information processing device.

Common view among psychologist that a cognitive theory should be like a

computer program.(Anderson 1980) i.e. It should describe a detailed

information processing mechanism whereby some cognitive function might be

implemented.

2.6 Computer engineering:

● How can we build an efficient computer?

● For artificial intelligence to succeed, we need two things: intelligence and an

artifact. The computer has been the artifact (object) of choice.

● The first operational computer was the electromechanical Heath Robinson, built

in 1940 by Alan Turing's team for a single purpose: deciphering German

messages.

● The first operational programmable computer was the Z-3, the invention of

KonradZuse in Germany in 1941.

● The first electronic computer, the ABC, was assembled by John Atanasoff and

his student Clifford Berry between 1940 and 1942 at Iowa State University.

● The first programmable machine was a loom, devised in 1805 by Joseph Marie

Jacquard (1752-1834) that used punched cards to store instructions for the

pattern to be woven.

2.7 Control theory and cybernetics:

● How can artifacts operate under their own control?

● Ktesibios of Alexandria (c. 250 B.C.) built the first self-controlling machine: a

water clock with a regulator that maintained a constant flow rate. This invention

changed the definition of what an artifact could do.

● Modern control theory, especially the branch known as stochastic optimal control,

has as its goal the design of systems that maximize an objective function over time.

● This roughly OBJECTIVE FUNCTION matches our view of Al: designing systems

that behave optimally.

o Calculus and matrix algebra- the tools of control theory

● The tools of logical inference and computation allowed AI researchers to consider

problems such as language, vision, and planning that fell completely outside the

control theorist‘s purview.

2.8 Linguistics:

● How does language relate to thought?

● In 1957, B. F. Skinner published Verbal Behavior. This was a comprehensive,

detailed account of the behaviorist approach to language learning, written by the

foremost expert in the field.

● Noam Chomsky, who had just published a book on his own theory, Syntactic

Structures. Chomsky pointed out that the behaviorist theory did not address the

notion of creativity in language.

● Modern linguistics and AI were ―born‖ at about the same time, and grew up

together, intersecting in a hybrid field called computational linguistics or natural

language processing.

● The problem of understanding language soon turned out to be considerably more

complex than it seemed in 1957. Understanding language requires an understanding

of the subject matter and context, not just an understanding of the structure of

sentences.

● knowledge representation (the study of how to put knowledge into a form that a

computer can reason with)- tied to language and informed by research in linguistics.

3 History of AI:

Important research that laid the groundwork for AI:

Maturation of Artificial Intelligence:

✔ 1943: The first work which is now recognized as AI was done by Warren

McCulloch and Walter pits in 1943. They proposed a model of artificial neurons.

✔ 1950: The Alan Turing who was an English mathematician and pioneered Machine

learning in 1950. Alan Turing publishes "Computing Machinery and Intelligence" in

which he proposed a test. The test can check the machine's ability to exhibit intelligent

behavior equivalent to human intelligence, called a Turing test.

Birth of Artificial Intelligence:

✔ In 1956, John McCarthy coined the term "Artificial Intelligence" as the topic of the

Dartmouth Conference, the first conference devoted to the subject.

The golden years-Early enthusiasm:

✔ 1966: The researchers emphasized developing algorithms which can solve

mathematical problems. Joseph Weizenbaum created the first chatbot in 1966, which was

named as ELIZA.

✔ 1972: The first intelligent humanoid robot was built in Japan which was named as

WABOT-1

A boom of AI:

✔ 1980: After AI winter duration, AI came back with "Expert System". Expert

systems were programmed that emulate the decision-making ability of a human expert. In

the Year 1980, the first national conference of the American Association of Artificial

Intelligence was held at Stanford University.

The emergence of intelligent agents:

✔ 1997: In the year 1997, IBM Deep Blue beats world chess champion, Gary

Kasparov, and became the first computer to beat a world chess champion.

✔ 2002: for the first time, AI entered the home in the form of Roomba, a vacuum

cleaner.

http://www-formal.stanford.edu/jmc/history/dartmouth.html
http://www-formal.stanford.edu/jmc/history/dartmouth.html
http://www-formal.stanford.edu/jmc/history/dartmouth.html
http://www-formal.stanford.edu/jmc/history/dartmouth.html

✔ 2006: AI came in the Business world till the year 2006. Companies like Facebook,

Twitter, and Netflix also started using AI.

Deep learning, big data and artificial general intelligence:

✔ 2011: In the year 2011, IBM's Watson won jeopardy, a quiz show, where it had to solve

the complex questions as well as riddles. Watson had proved that it could

understand natural language and can solve tricky questions quickly.

✔ 2012: Google has launched an Android app feature "Google now", which was able to

provide information to the user as a prediction.

✔ 2014: In the year 2014, Chatbot "Eugene Goostman" won a competition in the

infamous "Turing test."

✔ 2018: The "Project Debater" from IBM debated on complex topics with two master

debaters and also performed extremely well.

4 Sub Areas of AI:

Artificial intelligence (AI) is a vast and interdisciplinary field that encompasses many different

subfields or branches. These subfields focus on different aspects of creating intelligent systems,

such as:

✔ Machine Learning: Machine learning is a branch of artificial intelligence that allows

computers to learn without being explicitly programmed. This means that computers can

learn from data and improve their performance over time, without having to be told what

to do. The goal of machine learning is to develop algorithms that can automatically

identify patterns and relationships in data, and use these patterns to make predictions or

decisions. Machine learning can be divided into four main categories: Supervised

learning, Unsupervised learning, Deep Learning, Reinforcement learning,

✔ Natural language processing: Natural language processing (NLP) is a field of artificial

intelligence (AI) that deals with the interaction between computers and human language.

NLP aims to enable computers to understand, interpret, and generate human language in

a way that is similar to how humans do. This involves the use of algorithms, statistical

models, and machine learning techniques to analyze and derive meaning from human

language data. The task includes a)Text processing b) Text Analysis c) Speech

processing d) Text Translation.

✔ Computer vision: Computer vision is a domain of artificial intelligence (AI) that deals

with enabling machines to interpret and understand visual information from the world

around them. It involves the use of algorithms and mathematical models to analyze,

interpret, and process visual data, and has numerous applications in various industries. It

involves image and video analysis, object detection, and Image recognition.

✔ Robotics: Robotics combines AI with mechanical engineering to create intelligent robots

that can interact with the physical world. Robotics is a rapidly growing field with many

potential applications including manufacturing, healthcare, and the military.

✔ Expert systems: Expert systems are a type of AI that has been around for decades and

has proven to be effective in a variety of domains. They are designed to solve complex

problems by reasoning through bodies of knowledge, represented mainly as if–then rules

rather than through conventional procedural code. Expert systems can be used to improve

the quality of decision-making in a variety of domains.

✔ Knowledge representation and reasoning: AI in Knowledge Representation and

Reasoning encompasses the development of methods to portray and structure knowledge

in ways that empower AI systems to engage in reasoning and make inferences.

✔ Fuzzy logic: Fuzzy logic is often used in artificial intelligence (AI) to model the

uncertainty that is inherent in many real-world problems. Fuzzy logic is a type of logic

that allows for partial truths. This means that a statement can be true to a certain degree,

rather than being simply true or false.

✔ Game AI: It is a subfield of artificial intelligence (AI) that focuses on creating intelligent

agents that can play and compete in games.ome of the most common techniques used in

game AI include: Path finding, State space search, genetic algorithm.

5 Application of AI:

AI algorithms have attracted close attention of researchers and have also been applied

successfully to solve problems in engineering. Nevertheless, for large and complex

problems, AI algorithms consume considerable computation time due to stochastic

feature of the search approaches. Some of the key applications of AI include:

1. Business:

✔ Customer service: AI-powered chatbots can answer customer questions and

resolve issues 24/7.

✔ Fraud detection: AI can be used to identify fraudulent transactions and prevent

financial losses.

✔ Marketing: AI can be used to target ads to specific customers and track the

effectiveness of marketing campaigns.

2. Social media:

✔ Content moderation: AI can be used to identify and remove harmful content

from social media platforms.

✔ Personalization: AI can be used to personalize news feeds and

recommendations for users.

✔ Advertising: AI can be used to target ads to specific users and track the

effectiveness of advertising campaigns.

3. Engineering:

✔ Design: AI can be used to help engineers design products and systems that are

more efficient and reliable.

✔ Construction: AI can be used to automate tasks on construction sites and

improve safety.

✔ Maintenance: AI can be used to monitor and diagnose equipment problems,

preventing costly downtime.

4. Manufacturing:

✔ Planning: AI can be used to help manufacturers plan production schedules and

optimize resource allocation.

✔ Quality control: AI can be used to inspect products for defects and improve

quality.

✔ Robotics: AI can be used to control robots that perform manufacturing tasks.

5. Medicine:

 Diagnosis: AI can be used to help doctors diagnose diseases more accurately.

 Treatment planning: AI can be used to help doctors develop treatment plans that

are more effective and personalized.

 Drug discovery: AI can be used to discover new drugs and improve the efficiency

of drug development.

6. E-commerce:

✔ Product recommendations: AI can be used to recommend products to customers

based on their past purchases and browsing history.

✔ Fraud detection: AI can be used to identify fraudulent transactions and prevent

financial losses.

✔ Pricing: AI can be used to set prices for products that are both competitive and

profitable.

7. Entertainment:

✔ Virtual assistants: AI-powered virtual assistants can help users with tasks such as

setting reminders, making appointments, and controlling smart home devices.

✔ Personalized recommendations: AI can be used to recommend movies, TV shows,

music, and other entertainment content to users based on their interests.

✔

8. Education:

✔ Personalized learning: AI can be used to personalize learning experiences for

students based on their individual needs and abilities.

✔ Grading: AI can be used to grade student work more accurately and efficiently.

✔ Tutoring: AI-powered tutors can provide students with personalized help and

feedback.

9. Fraud detection:

✔ Credit card fraud: AI can be used to identify fraudulent credit card transactions.

✔ Bank fraud: AI can be used to identify fraudulent bank transactions.

✔ Insurance fraud: AI can be used to identify fraudulent insurance claims.

10. Surveillance:

✔ Security: AI can be used to monitor security cameras and identify potential

threats.

✔ Traffic management: AI can be used to monitor traffic and optimize traffic flow.

✔ Wildlife protection: AI can be used to monitor wildlife populations and identify

poachers.

11. Information retrieval:

✔ Search engines: AI can be used to improve the accuracy and relevance of search

results.

✔ Question answering: AI can be used to answer questions in a comprehensive and

informative way.

✔ Translation: AI can be used to translate text from one language to another.

12. Space exploration:

✔ Planning: AI can be used to help plan space missions and optimize resource

allocation.

✔ Navigation: AI can be used to navigate spacecraft through space.

✔ Robotics: AI can be used to control robots that perform tasks in space.

13. Gaming:

✔ Game AI: AI can be used to create more intelligent and challenging games.

✔ Virtual reality: AI can be used to create more immersive and realistic virtual reality

experiences.

✔ Augmented reality: AI can be used to overlay digital information onto the real world.

6 Building AI Systems:

1) Perception

Intelligent biological systems are physically embodied in the world and

experience the world through their sensors (senses). For an autonomous

vehicle, input might be images from a camera and range information

from a rangefinder. For a medical diagnosis system, perception is the set

of symptoms and test results that have been obtained and input to the

system manually.

2) Reasoning

Inference, decision-making, classification from what is sensed and what

the internal "model" is of the world. Might be a neural network, logical

deduction system, Hidden Markov Model induction, heuristic searching

a problem space, Bayes Network inference, genetic algorithms, etc.

Includes areas of knowledge representation, problem solving, decision

theory, planning, game theory, machine learning, uncertainty reasoning,

etc.

3) Action

Biological systems interact within their environment by actuation,

speech, etc. All behavior is centered around actions in the world.

Examples include controlling the steering of a Mars rover or

autonomous vehicle, or suggesting tests and making diagnoses for a

medical diagnosis system. Includes areas of robot actuation, natural

language generation, and speech synthesis.

7 Intelligent Systems:

In order to design intelligent systems, it is important to categorize them into

four categories:

1. Systems that think like humans

2. Systems that think rationally

3. Systems that act like humans:

4. Systems that act rationally

a) "The exciting new effort to make

computers think . . . machines with minds,

in the full and literal sense" (Haugeland,

1985)

"The automation of] activities that we

associate with human thinking, activities

such as decision-making, problem

solving,

learning..."(Bellman, 1978)

b) "The study of mental faculties

through the use of computational

models" (Charniak and McDermott,

1985)

"The study of the computations that

make it possible to perceive, reason,

and act" (Winston, 1992)

c) "The art of creating machines that perform

functions that require intelligence when

performed by people" (Kurzweil, 1990)

"The study of how to make computers

do things at which, at the moment,

people are better" (Rich and Knight, 1

99 1)

d) "A field of study that seeks to explain

and emulate intelligent behavior in

terms of computational processes"

(Schalkoff, 1 990)

"The branch of computer science

that is concerned with the

automation of intelligent behavior"

(Luger and Stubblefield, 1993)

Figure.1 The definitions on the top, (a) and (b) are concerned with reasoning,

whereas those on the bottom, (c) and (d) address behavior. The definitions on

the left, (a) and (c) measure success in terms of human performance, and those

on the right, (b) and (d) measure the ideal concept of intelligence called

rationality

 Human- Like Rationally

Think:

Cognitive Science Approach

“Machines that think like humans”

Laws of thought Approach

“ Machines that think Rationally”

Act:

Turing Test Approach

“Machines that behave like humans”

Rational Agent Approach

“Machines that behave Rationally”

Table 1 Four categories of AI

Scientific Goal: To determine which ideas about knowledge

representation, learning, rule systems search, and so on, explain various

sorts of real intelligence.

Engineering Goal: To solve real world problems using AI techniques such as

Knowledge representation, learning, rule systems, search, and so on.

Traditionally, computer scientists and engineers have been more

interested in the engineering goal, while psychologists, philosophers and

cognitive scientists have been more interested in the scientific goal.

✔ Cognitive Science: Think Human-Like

a. Requires a model for human cognition. Precise enough models allow simulation

by computers.

b. Focus is not just on behavior and I/O, but looks like reasoning process.

c. Goal is not just to produce human-like behavior but to produce a sequence of

steps of the reasoning process, similar to the steps followed by a human in

solving the same task.

✔ Laws of thought: Think Rationally

a. The study of mental faculties through the use of computational models;

that it is, the study of computations that make it possible to perceive

reason and act.

b. Focus is on inference mechanisms that are probably correct and guarantee an

optimal solution.

c. Goal is to formalize the reasoning process as a system of logical rules

and procedures of inference.

d. Develop systems of representation to allow inferences to be like ―Socrates is a

man. All men are mortal. Therefore Socrates is mortal”

✔ Turing Test: Act Human-Like

a. The art of creating machines that perform functions requiring

intelligence when performed by people; that it is the study of, how to

make computers do things which, at the moment, people do better.

b. Focus is on action, and not intelligent behavior centered around the representation

of the world

c. Example: Turing Test

o 3 rooms contain: a person, a computer and an interrogator.

o The interrogator can communicate with the other 2 by

teletype (to avoid the machine imitate the appearance of

voice of the person)

o The interrogator tries to determine which the person is

and which the machine is.

o The machine tries to fool the interrogator to believe that

it is the human, and the person also tries to convince the

interrogator that it is the human.

o If the machine succeeds in fooling the interrogator, then

conclude that the machine is intelligent.

✔ Rational agent: Act Rationally

a. Tries to explain and emulate intelligent behavior in terms of

computational process; that it is concerned with the automation of the

intelligence.

b. Focus is on systems that act sufficiently if not optimally in all situations.

c. Goal is to develop systems that are rational and sufficient

Types of AI:

The difference between strong AI and weak AI:

✔ Strong AI makes the bold claim that computers can be made to think on a level

(at least) equal to humans.

✔ Weak AI simply states that some "thinking-like" features can be added to

computers to make them more useful tools... and this has already started to

happen (witness expert systems, drive-by-wire cars and speech recognition

software).

8 INTELLIGENT AGENT’S:

 8.1 AGENTS AND ENVIRONMENTS:

Fig 1 Agents and Environments

 Agent:

An Agent is anything that can be viewed as perceiving its environment

through sensors and acting upon that environment through actuators.

✔ A human agent has eyes, ears, and other organs for sensors and

hands, legs, mouth, and other body parts for actuators.

✔ A robotic agent might have cameras and infrared range finders for

sensors and various motors for actuators.

✔ A software agent receives keystrokes, file contents, and network packets

as sensory inputs and acts on the environment by displaying on the screen,

writing files, and sending network packets.

Figure 2: Agent program

The Structure of Intelligent Agents

Agent = Architecture + Agent Program

 Percept:

We use the term percept to refer to the agent's perceptual inputs at any given instant.

 Percept Sequence:

An agent's percept sequence is the complete history of everything the agent has ever

perceived.

 Agent function:

Mathematically speaking, we say that an agent's behavior is described by

the agent function that maps any given percept sequence to an action.

 Agent program

Internally, the agent function for an artificial agent will be implemented by

an agent program. It is important to keep these two ideas distinct. The

agent function is an abstract mathematical description; the agent program is

a concrete implementation, running on the agent architecture.

To illustrate these ideas, we will use a very simple example-the vacuum-cleaner world

shown in Fig 3. This particular world has just two locations: squares A and B. The

vacuum agent perceives which square it is in and whether there is dirt in the square. It

can choose to move left, move right, suck up the dirt, or do nothing. One very simple

agent function is the following: if the current square is dirty, then suck, otherwise move

to the other square. A partial tabulation of this agent function is shown in Table.

Fig 3: A vacuum-cleaner world with just two locations.

 Agent function

Percept Sequence Action

[A, Clean] Right

[A, Dirty] Suck

[B, Clean] Left

[B, Dirty] Suck

[A, Clean], [A, Clean] Right

[A, Clean], [A, Dirty] Suck

…

Table 3 Partial tabulation of a simple agent function for the example: vacuum-cleaner

world shown in the Fig 3

Fig 1.4 The REFLEX-VACCUM-AGENT program is invoked for each new

percept (location, status) and returns an action each time

9 THE CONCEPT OF RATIONALITY :

● The rational agent is one that does the right thing- conceptually speaking,

every entry in the table for the agent function is filled out correctly.

● A Performance measure embodies the criterion for success of an agent‘s

behavior.

● As a general rule, it is better to design performance measures according to

what one actually wants in the environment, rather than according, to how one

think the agent should behave.

● Rationality depends on four things

✔ The performance measure that defines the criterion of success.

✔ The agent‘s prior knowledge of the environment

✔ The actions that the agent can perform

✔ The agent‘s percept sequence to date.

● Define Rationality:

For each possible percept sequence a rational agent should select an

action that is expected to maximize its performance measure, give the

evidence provided by the perfect sequence and whatever build in

knowledge the agent has.

10 TASK ENVIRONMENT:

The task environments are essentially the ‗problems‘ for which rational agents are the

‗solutions‘. For solving a problem rationally, we need to specify the performance

measure, the environment, and the agent‘s actuators and sensors, which is called

PEAS.

Agent Type Performance measure Environment Actuators Sensors

Taxi driver

Safe, Fast, legal,

comfortable trip,

maximize profits

Roads, other traffic,

pedestrians,

customers

Steering,

accelerator,

brake, signal,

horn, display

Cameras, sonar,

speedometer,

GPS, odometer,

accelerometer,

engine sensors,

keyboard

Table 2 PEAS description of the task environment for an automated taxi

Properties of agent:

The range of task environment arise and categories based on the following properties

i) Fully observable vs partially observable
If an agent sensor can sense or access the complete state of an environment at each

point of time then it is a fully observable environment, else it is partially observable.

ii) Deterministic vs stochastic:

If an agent's current state and selected action can completely determine the next state

of the environment, then such environment is called a deterministic environment.

A stochastic environment is random in nature and cannot be determined completely

by an agent.

iii) Episodic vs sequential

In an episodic setting, a series of single, isolated actions occurs, with the present

percept being sufficient for guiding each action.

In contrast, within a sequential context, the agent's decision-making necessitates the

recollection of prior actions to ascertain the optimal course of subsequent actions.

iv) Static vs dynamic

If the environment can change itself while an agent is deliberating then such

environment is called a dynamic environment else it is called a static environment.

Static environments are easy to deal because an agent does not need to continue

looking at the world while deciding for an action.

v) Discrete vs continuous

An environment is classified as discrete if it offers a finite set of percepts and actions

that can be executed within it; otherwise, it is termed a continuous environment.

vi) Single agent vs multi agent

When a solitary agent functions independently within an environment, it is referred to

as a single-agent environment.

Conversely, if numerous agents operate within an environment simultaneously, it is

termed a multi-agent environment.

Figure: 4 Examples of task environment and their environments

11 TYPES OF AGENTS

Agents can be grouped into four classes based on their degree of perceived intelligence and

capability:

✔ Simple Reflex Agents

✔ Model-Based Reflex Agents

✔ Goal-Based Agents

✔ Utility-Based Agents

✔ Learning Agent

i) The Simple reflex agents

• The Simple reflex agents are the simplest agents. These agents take decisions on the basis of

the current percepts and ignore the rest of the percept history (past State).

• These agents only succeed in the fully observable environment.

• The Simple reflex agent does not consider any part of percepts history during their decision

and action process.

• The Simple reflex agent works on Condition-action rule, which means it maps the current

state to action. Such as a Room Cleaner agent, it works only if there is dirt in the room.

 Figure 5: The Simple reflex agents

ii) Model Based Reflex Agents

The Model-based agent can work in a partially observable environment, and track the

situation.

• A model-based agent has two important factors:

 o Model: It is knowledge about "how things happen in the world," so it is called a

Model-based agent.

 o Internal State: It is a representation of the current state based on percept history.

• These agents have the model, "which is knowledge of the world" and based on the

model they perform actions.

Figure 6: A model based reflex agent

iii) Goal Based Agents:

● The knowledge of the current state environment is not always sufficient to decide for an

agent to what to do.

● The agent needs to know its goal which describes desirable situations. o Goal-based

agents expand the capabilities of the model-based agent by having the "goal"

information.

● They choose an action, so that they can achieve the goal.

● These agents may have to consider a long sequence of possible actions before deciding

whether the goal is achieved or not.

● Such considerations of different scenario are called searching and planning, which

makes an agent proactive.

Figure7: Goal based agents

iv) Utility Based Agents

● These agents are similar to the goal-based agent but provide an extra

component of utility measurement (―Level of Happiness‖) which makes them

different by providing a measure of success at a given state.

● Utility-based agent act based not only goals but also the best way to achieve the

goal.

● The Utility-based agent is useful when there are multiple possible alternatives,

and an agent has to choose in order to perform the best action.

● The utility function maps each state to a real number to check how efficiently

each action achieves the goals.

Figure 8: Utility Based Agents

v) Learning agents :

● A learning agent in AI is the type of agent which can learn from its past

experiences, or it has learning capabilities.

● It starts to act with basic knowledge and then able to act and adapt

automatically through learning.

o A learning agent has mainly four conceptual components, which are:

o Learning element: It is responsible for making improvements by learning

from environment

o Critic: Learning element takes feedback from critic which describes that

how well the agent is doing with respect to a fixed performance standard.

o Performance element: It is responsible for selecting external action

o Problem generator: This component is responsible for suggesting actions

that will lead to new and informative experiences.

● Hence, learning agents are able to learn, analyze performance, and look for new

ways to improve the performance.

Figure 9: Learning agents

12 SEARCHING FOR SOLUTIONS

In Artificial Intelligence, Search techniques are universal problem-solving methods.

Rational agents or Problem-solving agents in AI mostly used these search strategies or

algorithms to solve a specific problem and provide the best result. Problem- solving

agents are the goal-based agents and use atomic representation. In this topic, we will learn

various problem-solving search algorithms.

Problem solving is a process of generating solutions from observed data.

−a problem is characterized by a set of goals,

−a set of objects, and

−a set of operations.

These could be ill-defined and may evolve during problem solving.

Searching Solutions:

To build a system to solve a problem:

1. Define the problem precisely

2. Analyze the problem

3. Isolate and represent the task knowledge that is necessary to solve the

problem

4. Choose the best problem-solving techniques and apply it to the particular

problem.

Defining the problem as State Space Search:

The state space representation forms the basis of most of the AI methods.

● Formulate a problem as a state space search by showing the legal

problem states, the legal operators, and the initial and goal states.

● A state is defined by the specification of the values of all attributes of interest in

the world

● An operator changes one state into the other; it has a precondition

which is the value of certain attributes prior to the application of the

operator, and a set of effects, which are the attributes altered by the

operator

● The initial state is where you start

● The goal state is the partial description of the solution

State Spaces versus Search Trees:

● State Space

o Set of valid states for a problem

o Linked by operators

o e.g., 20 valid states (cities) in the Romanian travel problem

● Search Tree

– Root node = initial state

– Child nodes = states that can be visited from parent

– Note that the depth of the tree can be infinite

• E.g., via repeated states

– Partial search tree

• Portion of tree that has been expanded so far

– Fringe

• Leaves of partial search tree,

candidates for expansion Search trees = data structure

to search state-space

Properties of Search Algorithms

Which search algorithm one should use will generally depend on the problem domain.

There are four important factors to consider:

1. Completeness – Is a solution guaranteed to be found if at least one solution exists?

2. Optimality – Is the solution found guaranteed to be the best (or lowest cost)

solution if there exists more than one solution?

3. Time Complexity – The upper bound on the time required to find a solution,

as a function of the complexity of the problem.

4. Space Complexity – The upper bound on the storage space (memory)

required at any point during the search, as a function of the complexity of the

problem.

Formal Description of the problem:

1. Define a state space that contains all the possible configurations of the relevant

objects.

2. Specify one or more states within that space that describe possible situations from

which the problem solving process may start (initial state).

3. Specify one or more states that would be acceptable as solutions to the problem (

goal states).

4. Specify a set of rules that describe the actions (operations) available.

Some of the most popularly used problem solving with the help of artificial intelligence

are:

1. Chess.

2. Travelling Salesman Problem.

3. Tower of Hanoi Problem.

4. Water-Jug Problem.

5. N-Queen Problem.

Example 1: Route Estimation problem

A problem is defined by four items:

1. initial state e.g., "at Arad―

2. actions or successor function : S(x) = set of

action–state pairs e.g., S(Arad) = {<Arad ⮚

Zerind, Zerind>, … }

3. goal test (or set of goal states)

e.g., x = "at Bucharest‖, Checkmate(x)

4. path cost (additive)

e.g., sum of distances, number of actions executed, etc.

c(x,a,y) is the step cost, assumed to be ≥ 0

A solution is a sequence of actions leading from the initial state to a goal state

Figure 10 A simplified road map of part of Romania, with road distance in miles

Example 2: 8-queens problem

Figure 11: 8-queen problem

1. Initial State: Any arrangement of 0 to 8 queens on board.

2. Operators: add a queen to any square.

3. Goal Test: 8 queens on board, none attacked.

4. Path cost: not applicable or Zero (because only the final state

counts, search cost might be of interest).

Example 3: Water Jug Problem

Consider the following problem:

A Water Jug Problem: You are given two jugs, a 4-gallon one

and a 3-gallon one, a pump which has unlimited water which you

can use to fill the jug, and the ground on which water may be

poured. Neither jug has any measuring markings on it. How can

you get exactly 2 gallons of water in the 4-gallon jug?

State Representation and Initial State :

We will represent a state of the problem as a tuple (x, y) where x

represents the amount of water in the 4-gallon jug and y represents the

amount of water in the 3-gallon jug. Note 0 ≤x≤ 4, and 0 ≤y ≤3. Our

initial state: (0, 0)

Goal Predicate - state = (2, y) where 0≤ y≤ 3.

Operators -we must defi ne a set of operators that will take us from one state to another:

1. Fill 4-gal jug (x,y)

x < 4

 → (4,y)

2. Fill 3-gal jug (x,y)

y < 3

→ (x,3)

3. Empty 4-gal jug on ground (x,y)

x > 0

→ (0,y)

4. Empty 3-gal jug on ground (x,y)

y > 0

→ (x,0)

5. Pour water from 3-gal jug (x,y)

→! (4, y - (4 - x))

to ll 4-gal jug 0 < x+y 4 and y > 0

6. Pour water from 4-gal jug (x,y) → (x - (3-y), 3)

to ll 3-gal-jug 0 < x+y 3 and x > 0

7. Pour all of water from 3-gal jug (x,y) → (x+y, 0)

into 4-gal jug 0 < x+y 4 and y 0

8. Pour all of water from 4-gal jug

into 3-gal jug

(x,y)

0 < x+y

3 and x

0

→ (0, x+y)

Through Graph Search, the following solution is found :

Gals in 4-gal jug Gals in 3-gal jug Rule Applied

0 0

 1. Fill 4

4 0

 6. Pour 4 into 3 to ll

1 3

 4. Empty 3

1 0

 8. Pour all of 4 into 3

0 1

 1. Fill 4

4 1

 6. Pour into 3

2 3

Example 4: Vacuum World States

Vacuum World States: The state is determined by both the agent location and the dirt

locations.

The agent is in one of the 2 locations, each of which might or might not contain dirt. Thus

there are 2*2^2=8 possible world states.

Initial state: Any state can be designated as the initial state.

Actions: In this simple environment, each state has just three actions: Left, Right, and Suck.

Larger environments might also include Up and Down.

Transition model: The actions have their expected effects, except that moving Left in the

leftmost square, moving Right in the rightmost square, and Sucking in a clean square have

no effect. The complete state space is shown in Figure.

Goal test: This checks whether all the squares are clean. Path cost: Each step costs 1, so the

path cost is the number of steps in the path.

Figure 12: Vacuum World States

Example 5: 8-Puzzle Problem

Figure 13: 8-Puzzle Problem

States: A state description specifies the location of each of the eight tiles and the blank in

one of the nine squares.

Initial state: Any state can be designated as the initial state. Note that any given goal can be

reached from exactly half of the possible initial states.

The simplest formulation defines the actions as movements of the blank space Left, Right,

Up, or Down. Different subsets of these are possible depending on where the blank is.

Transition model: Given a state and action, this returns the resulting state; for example, if we

apply Left to the start state in Figure the resulting state has the 5 and the blank switched.

Goal test: This checks whether the state matches the goal configuration shown in Figure.

Path cost: Each step costs 1, so the path cost is the number of steps in the path.

13 TYPES OF SEARCHING STRATEGIES

A search algorithm takes a search problem as input and returns a solution, or an indication of

failure. The algorithms that superimpose a search tree over the state space graph, forming

various paths from the initial state, trying to find a path that reaches a goal state. Each node in

the search tree corresponds to a state in the state space and the edges in the search tree

correspond to actions.

Figure 14: types of search strategies

13.1 UNINFORMED SEARCH STRATEGIES

● Also called blind, exhaustive or brute-force search, uses no information about the

problem to guide the search and therefore may not be very efficient.

● Strategies that know whether one non goal state is ―more promising‖ than another are

called Informed search or heuristic search strategies.

● There are five uninformed search strategies as given below.

o Breadth-first search

o Uniform-cost search

o Depth-first search

o Depth-limited search

o Iterative deepening search

i) Breadth-first search, also known as BFS, is a straightforward technique where

exploration begins from the root node, followed by expansion of all successors of the

root node, and then their respective successors, and so forth. Essentially, at a

particular depth level in the search tree, all nodes are expanded prior to progressing to

the subsequent depth level.

The mechanism of breadth-first search is achieved by invoking TREE-SEARCH with

an empty fringe designed as a first-in-first-out (FIFO) queue. This ensures that the

nodes visited earliest will be the ones expanded first. In simpler terms, utilizing

TREE-SEARCH (problem, FIFO-QUEUE()) leads to the execution of breadth-first

search. The FIFO queue appends newly generated successor nodes at the queue's tail,

thus prioritizing the expansion of shallower nodes over deeper ones.

Algorithm:

1. Create a variable called NODE-LIST and set it to initial state

2. Until a goal state is found or NODE-LIST is empty do

a. Remove the first element from NODE-LIST and call it E.

If NODE-LIST was empty, quit

b. For each way that each rule can match the state described in E do:

i. Apply the rule to generate a new state

ii. If the new state is a goal state, quit and return this state

iii. Otherwise, add the new state to the end of NODE-LIST

BFS illustration:

Figure 15 : BFS on a simple binary tree

Properties of BFS

• Complete? Yes (if b is finite)

• Time? 1+b+b
2
+b

3
+… +b

d
 = b(b

d
-1) = O(b

d+1
)

• Space? O(b
d+1

) (keeps every node in memory)

• Optimal? Yes (if cost = 1 per step)

Space is the bigger problem (more than time)

Maximum length of any path (m) in search space

Advantages: Finds the path of minimal length to the goal.

Disadvantages:

⮚ Requires the generation and storage of a tree whose size is exponential

the depth of the shallowest goal node.

⮚ The breadth first search algorithm cannot be effectively used unless the

search space is quite small.

ii) Uniform cost search

Instead of expanding the shallowest node, uniform-cost search expands the node n

with the lowest path cost. Uniform-cost search does not care about the number of

steps a path has, but only about their total cost.

Properties:

● Completeness:
Uniform-cost search is complete, such as if there is a solution, UCS will find it.

● Time Complexity:
Let C* is Cost of the optimal solution, and ε is each step to get closer to the goal node.

Then the number of steps is = C*/ε+1. Here we have taken +1, as we start from state 0

and end to C*/ε

Hence, the worst-case time complexity of Uniform-cost search isO(b
1 + [C*/ε]

)/.

● Space Complexity:
The same logic is for space complexity so, the worst-case space complexity of Uniform-

cost search is O(b
1 + [C*/ε]

).

● Optimal:
Uniform-cost search is always optimal as it only selects a path with the lowest path cost.

iii) Depth first Search

Depth-first search (DFS) represents a recursive technique employed to traverse tree or

graph data structures. Its name derives from the fact that it commences exploration

from the root node, pursuing each route to its utmost depth node prior to progressing

to the subsequent route. The implementation of DFS utilizes a stack data structure.

The operational process of the DFS algorithm exhibits resemblances to the BFS

algorithm.

• Algorithm:

1. Create a variable called NODE-LIST and set it to initial state

2. Until a goal state is found or NODE-LIST is empty do

a. Remove the first element from NODE-LIST and call it E.

If NODE-LIST was empty, quit

b. For each way that each rule can match the state described in E do:

i. Apply the rule to generate a new state

ii. If the new state is a goal state, quit and return this state

iii. Otherwise, add the new state in front of NODE-LIST

Figure DFS on a binary tree

Properties :

• Complete? No: fails in infinite-depth spaces, spaces with loops

– Modify to avoid repeated states along path

⮚ complete in finite spaces

• Time? O(b
m
): terrible if m is much larger than d

– but if solutions are dense, may be much faster than breadth-first

• Space? O(bm), i.e., linear space!

• Optimal? No

Drawback of Depth-first-search:

 The drawback of depth-first-search is that it can make a wrong choice and get stuck going down

very long(or even infinite) path when a different choice would lead to solution near the root of

the search tree. For example, depth-first-search will explore the entire left subtree even if node C

is a goal node.

iv) Depth limited search

A variant of depth-first search called backtracking search uses less memory and only one

successor is generated at a time rather than all successors.; Only O(m) memory is needed

rather than O(bm). Depth limited search is backtracking search.

• It is depth-first search

– with a predefined maximum depth

– However, it is usually not easy to define the suitable maximum depth

– too small ⮚ no solution can be found

– too large ⮚ the same problems are suffered from

• Anyway the search is

– complete

– but still not optimal

The problem of unbounded trees can be alleviated by supplying depth-first-search with a pre-

determined depth limit l. That is, nodes at depth l are treated as if they have no successors. This

approach is called depth-limited-search. The depth limit solves the infinite path problem.

Depth-limited-search can be implemented as a simple modification to the general treesearch

algorithm or to the recursive depth-first-search algorithm. The pseudocode for recursive depth-

limited-search is shown in Figure.

It can be noted that the above algorithm can terminate with two kinds of failure : the standard

failure value indicates no solution; the cutoffvalue indicates no solution within the depth limit.

Depth-limited search = depth-first search with depth limit l,returns cut off if any path is cut off

by depth limit

Algorithm:

Depth limited search Illustration

Figure 17: Illustration of Depth limited search

Properties:

Completeness: DLS search algorithm is complete if the solution is above the depth-limit.

Time Complexity: Time complexity of DLS algorithm is O(b
ℓ
).

Space Complexity: Space complexity of DLS algorithm is O(b×ℓ).

Optimal: Depth-limited search can be viewed as a special case of DFS, and it is also not optimal

even if ℓ>d.

v) Exhaustive searches - Iterative deepening depth first search

Iterative deepening search, also referred to as iterative-deepening-depth-first search, is a

widely used approach that is often paired with depth-first search to identify an optimal depth

limit. This method gradually elevates the limit—starting from 0, then progressing to 1,

followed by 2, and so forth—until a goal is successfully located. This termination takes place

once the depth limit aligns with 'd,' representing the depth of the shallowest goal node. The

algorithm's schematic is depicted in the figure.

Iterative deepening search amalgamates the advantages of both depth-first and breadth-first

search techniques. Similar to depth-first search, it maintains a modest memory requirement,

specifically O(bd). Simultaneously, akin to breadth-first search, it guarantees completeness

under the condition of finite branching factors and optimality when the path cost corresponds

to a non-decreasing function of the node's depth.

Figure 18: Iterative deepening depth first search

Figure 19: Iterative deepening depth first search Illustration:

Properties:

Completeness:
This algorithm is complete is ifthe branching factor is finite.

Time Complexity:
Let's suppose b is the branching factor and depth is d then the worst-case time complexity

is O(b
d
).

Space Complexity:

The space complexity of IDDFS will be O(bd).

vi) Bidirectional search:

● The idea behind bidirectional search is to run two simultaneous searches – one forward

from the initial state and the other backward from the goal, stopping when the two

searches meet in the middle.

● The motivation is that b
d/2

+ b
d/2

much less than, or in the figure, the area of the two

small circles is less than the area of one big circle centered on the start and reaching to

the goal.

Figure:20 A schematic view of bidirectional search

Before moving into bidirectional search let‘s first understand a few terms.

• Forward Search: Looking in-front of the end from start.

• Backward Search: Looking from end to the start back-wards.

• So Bidirectional Search as the name suggests is a combination of forwarding and backward

search. Basically, if the average branching factor going out of node / fan-out, if fan-out is

less, prefer forward search. Else if the average branching factor is going into a node/fan in is

less (i.e. fan-out is more), prefer backward search.

• We must traverse the tree from the start node and the goal node and wherever they meet the

path from the start node to the goal through the intersection is the optimal solution. The BS

Algorithm is applicable when generating predecessors is easy in both forward and backward

directions and there exist only 1 or fewer goal states.

Figure21 : Bidirectional search illustration

Properties :

Completeness: Bidirectional Search is complete if we use BFS in both searches.

Time Complexity: Time complexity of bidirectional search using BFS is O(b
d
).

Space Complexity: Space complexity of bidirectional search is O(b
d
)

Optimal: Bidirectional search is Optimal.

COMPARING UNINFORMED SEARCH STRATEGIES

Figurre 22:The evaluation of search strategies. B is the branching factor; d is the depth of the

shallowet solution; m is the maximum depth of the search tree; l is the depth limit.

Superscript caveats are as follows:
a
 complete if b is finite;

b
 complete if step costs >= Ɛ for

positive Ɛ;
c
 optimal if step costs are all identical;

d
 if both directions use breadth- first search.

13.2 INFORMED (HEURISTIC) SEARCH STRATEGIES

The informed search strategy is one that uses problem- specific knowledge beyond the definition

of the problem itself. And it can find solutions more efficiently than an uninformed strategy.

Best-first search: Best-first search is an instance of general TREE-SEARCH or GRAPH-

SEARCH algorithm in which a node is selected for expansion based on an evaluation function

f(n). The node with lowest evaluation is selected for expansion, because the evaluation measures

the distance to the goal. This can be implemented using a priority-queue, a data structure that

will maintain the fringe in ascending order of f-values.

A Heuristic technique helps in solving problems, even though there is no guarantee that it will

never lead in the wrong direction. There are heuristics of every general applicability as well as

domain specific. The strategies are general purpose heuristics. In order to use them in a specific

domain they are coupler with some domain specific heuristics. There are two major ways in

which domain - specific, heuristic information can be incorporated into rule-based search

procedure.

A heuristic function is a function that maps from problem state description to measures

desirability, usually represented as number weights. The value of a heuristic function at a given

node in the search process gives a good estimate of that node being on the desired path to

solution.

i) Greedy Best-first search

Greedy best-first search tries to expand the node that is closest to the goal, on the: grounds that

this is likely to lead to a solution quickly. Thus, it evaluates nodes by using just the heuristic

function:

Taking the example of Route-finding problems in Romania, the goal is to reach Bucharest

starting from the city Arad. We need to know the straight-line distances to Bucharest from

various cities as shown in Figure. For example, the initial state is In (Arad), and the straight line

distance heuristic hSLD (In (Arad)) is found to be 366. Using the straight-line distance heuristic

hSLD, the goal state can be reached faster.

Arad

Bucharest

Craiova

Drobeta

Eforie

Fagaras

Giurgiu

366

0

160

242

161

176

77

Mehadia

Neamt

Oradea

Pitesti

Rimnicu Vilcea

Sibiu

Timisoara

241

234

380

100

193

253

329

Hirsova

Urziceni

Iasi

Vaslui

Lugoj

Zerind

151

80

226

199

244

374

Figure: Values of hSLD-straight-line distances to B u c h a r e s t.

The Initial State

After Expanding Arad

After Expanding Sibiu

After Expanding Fagaras

Figure 23 : Stages in a greedy best-first search for Bucharest using the straight-line

distance heuristic hSLD. Nodes are labeled with their h-values.

Properties of greedy search to Complete:

⮚ Complete: NO [can get stuck in loops, e.g., Complete in finite space

with repeated- state checking]

⮚ Time Complexity: O (bm) [but a good heuristic can give dramatic improvement]

⮚ Space Complexity: O (bm) [keeps all nodes in memory]

⮚ Optimal: NO

Greedy best-first search is not optimal, and it is incomplete. The worst-case

time and space complexity is O (b
m

), where m is the maximum depth of the

search space.

ii) A* SEARCH

A* Search is the most widely used form of best-first search. The evaluation function f(n) is

obtained by combining

(1) g(n) = the cost to reach the node, and

(2) h(n) = the cost to get from the node to the goal : f(n) = g(n) + h(n).

A* Search is both optimal and complete. A* is optimal if h(n) is an admissible heuristic. The

obvious example of admissible heuristic is the straight-line distance hSLD. It cannot be an

overestimate. A* Search is optimal if h(n) is an admissible heuristic – that is, provided that

h(n) never overestimates the cost to reach the goal. An obvious example of an admissible

heuristic is the straight-line distance hSLD that we used in getting to Bucharest. The progress

of an A* tree search for Bucharest is shown in Figure The values of ‗g ‗ are computed from

the step costs shown in the Romania map(figure). Also the values of hSLD are given in

Figure

Algorithm:

Algorithm:

1. Initialize : Set OPEN =

(S);

 CLOSE

D = () g(s)= 0,

f(s)=h(s)

2. Fail : If OPEN = (), Terminate and fail.

3. Select : select the minimum cost state, n, from OPEN,

save n in CLOSED

4. Terminate : If n €G, Terminate with success and return f(n)

5. Expand : for each successor, m, of n

a) If m € *OPEN U CLOSED+ Set g(m) = g(n)

+ c(n , m) Set f(m) = g(m) + h(m)

 Insert m in OPEN

b) If m € *OPEN U CLOSED+

Set g(m) = min { g(m) , g(n) + c(n , m)} Set f(m) = g(m) +

h(m)

If f(m) has decreased and m € CLOSED Move m to OPEN.

A* Illustration:

A* search properties:

▪ The algorithm A* is admissible. This means that provided a solution exists, the

first solution found by A* is an optimal solution. A* is admissible under the

following conditions:

▪ Heuristic function: for every node n , h(n) ≤ h*(n) .

▪ A* is also complete.

▪ A* is optimally efficient for a given heuristic.

▪ A* is much more efficient that uninformed search.

UNIT 1: QUESTION BANK

Introduction: Intelligent Systems, Foundations of AI and its history, Risks and Benefits of AI.

Solving Problems by Searching: Problem-Solving Agents, Searching for Solutions,

Uninformed Search Strategies: Breadth-first search, Uniform cost search, Depth-first search,

Iterative deepening Depth-first search, Bidirectional search,

Informed (Heuristic) Search Strategies: Greedy best-first search, A* search, Heuristic Functions.

S.No Questions BT Level Competence

1

Define Artificial intelligence(AI)? Explain the

techniques of AI and describe the characteristics of

AI.
BT2 Understand

2
Examine the PEAS specification of the task

environment of an agent?
BT4 Analyse

3

Summarize the following uninformed search

i)Depth First Search

ii)Iterative Deepening Depth First Search.

iii) Bidirectional Search.

BT2

4
Identify and discuss any two informed search

methods with examples.

5

Compare and contrast uninformed search strategies

(e.g., breadth-first, depth-first) with informed search

strategies (e.g., A* search) in terms of their

efficiency and optimality.

BT4

6
Evaluate the performance measure of various

informed search algorithms?
BT5

7

What is task environment and its characteristics?

And indentify the task environment for the

following problems

i) Travellingsaleman problem

ii) 8-puzzle

iii) Twoers of Hanoi

iv) Chess

BT1

8
What is agent programs and agent function?

Illustrate with example?
BT3

9
Explain in details about the various agents with

schematic diagram or pseudocode?
BT2

10

Define Heuristics. Demonstrate the significance of

heuristic function in the informed search with

suitable example.
BT2

11

Consider the given problem. Formulate the operator

involved in it. Consider the water jug problem: You

are given two jugs, a 4gallon one and 3-gallon one.

Neither has any measuring marker on it. There is a

pump that can be used to fill the jugs with water.

How can you get exactly 2 gallons of water from the

4gallon jug? Explicit Assumptions: A jug can be

filled from the pump, water can be poured out of a

jug on to the ground, water can be poured from one

jug to another and that there are no other measuring

devices available.

BT6

Artificial Intelligence

Unit-2

• Beyond Classical Search: Hill-climbing search, simulated annealing search, Local

Search in Continuous Spaces, Searching with Non-Deterministic Actions, Searching

with Partial Observations, Online Search Agents and Unknown Environment.

• Constraint Satisfaction Problems: Defining Constraint Satisfaction Problems,

Constraint Propagation, Backtracking Search for CSPs, Local Search for CSPs, the

Structure of Problems.

2.1) Beyond Classical Search

Local Search

2.1.1: Hill Climbing Search

Hill climbing is a simple optimization algorithm used in Artificial Intelligence (AI) to find the

best possible solution for a given problem. It belongs to the family of local search algorithms

and is often used in optimization problems where the goal is to find the best solution from a set

of possible solutions.

 In Hill Climbing, the algorithm starts with an initial solution and then iteratively makes

small changes to it in order to improve the solution. These changes are based on a heuristic

function that evaluates the quality of the solution. The algorithm continues to make these

small changes until it reaches a local maximum, meaning that no further improvement can

be made with the current set of moves.

 There are several variations of Hill Climbing, including steepest ascent Hill Climbing, first -

choice Hill Climbing, and simulated annealing. In steepest ascent Hill Climbing, the

algorithm evaluates all the possible moves from the current solution and selects the one that

leads to the best improvement. In first-choice Hill Climbing, the algorithm randomly

selects a move and accepts it if it leads to an improvement, regardless of whether it is the

best move. Simulated annealing is a probabilistic variation of Hill Climbing that allows the

algorithm to occasionally accept worse moves in order to avoid getting stuck in local

maxima.

Hill Climbing can be useful in a variety of optimization problems, such as scheduling, route

planning, and resource allocation. However, it has some limitations, such as the tendency to

get stuck in local maxima and the lack of diversity in the search space. Therefore, it is often

combined with other optimization techniques, such as genetic algorithms or simulated

annealing, to overcome these limitations and improve the search results.

Advantages of Hill Climbing algorithm:

1. Hill Climbing is a simple and intuitive algorithm that is easy to understand and implement.

2. It can be used in a wide variety of optimization problems, including those with a large

search space and complex constraints.

3. Hill Climbing is often very efficient in finding local optima, making it a good choice for

problems where a good solution is needed quickly.

4. The algorithm can be easily modified and extended to include additional heuristics or

constraints.

Disadvantages of Hill Climbing algorithm:

1. Hill Climbing can get stuck in local optima, meaning that it may not find the global

optimum of the problem.

2. The algorithm is sensitive to the choice of initial solution, and a poor initial solution may

result in a poor final solution.

3. Hill Climbing does not explore the search space very thoroughly, which can limit its ability

to find better solutions.

4. It may be less effective than other optimization algorithms, such as genetic algorithms or

simulated annealing, for certain types of problems.

Hill Climbing is a heuristic search used for mathematical optimization problems in the field of

Artificial Intelligence.

 Given a large set of inputs and a good heuristic function, it tries to find a sufficiently good

solution to the problem. This solution may not be the global optimal maximum.

 In the above definition, mathematical optimization problems imply that hill-climbing

solves the problems where we need to maximize or minimize a given real function by

choosing values from the given inputs. Example-Travelling salesman problem where we

need to minimize the distance traveled by the salesman.

 ‗Heuristic search‘ means that this search algorithm may not find the optimal solution to the

problem. However, it will give a good solution in a reasonable time.

https://www.geeksforgeeks.org/search-algorithms-in-ai/
https://www.geeksforgeeks.org/travelling-salesman-problem-set-1/

 A heuristic function is a function that will rank all the possible alternatives at any

branching step in the search algorithm based on the available information. It helps the

algorithm to select the best route out of possible routes.

Features of Hill Climbing

1. Variant of generating and test algorithm:

It is a variant of generating and testing algorithms. The generate and test algorithm is as

follows :

 Generate possible solutions.

 Test to see if this is the expected solution.

 If the solution has been found quit else go to step 1.

Hence we call Hill climbing a variant of generating and test algorithm as it takes the feedback

from the test procedure. Then this feedback is utilized by the generator in deciding the next

move in the search space.

2. Uses the Greedy approach:

At any point in state space, the search moves in that direction only which optimizes the cost of

function with the hope of finding the optimal solution at the end.

2.1.1.1: Types of Hill Climbing and Algorithms

1. Simple Hill climbing:

It examines the neighboring nodes one by one and selects the first neighboring node which

optimizes the current cost as the next node.

Algorithm for Simple Hill climbing :

 Evaluate the initial state. If it is a goal state then stop and return success. Otherwise, make

the initial state as the current state.

 Loop until the solution state is found or there are no new operators present which can be

applied to the current state.

 Select a state that has not been yet applied to the current state and apply it to

produce a new state.

 Perform these to evaluate the new state.

 If the current state is a goal state, then stop and return success.

 If it is better than the current state, then make it the current state and

proceed further.

 If it is not better than the current state, then continue in the loop until

a solution is found.

 Exit from the function.

2. Steepest-Ascent Hill climbing:

It first examines all the neighboring nodes and then selects the node closest to the solution

state as of the next node.

Algorithm for Steepest Ascent Hill climbing :

https://www.geeksforgeeks.org/greedy-algorithms-set-1-activity-selection-problem/

 Evaluate the initial state. If it is a goal state then stop and return success. Otherwise, make

the initial state as the current state.

 Repeat these steps until a solution is found or the current state does not change

 Select a state that has not been yet applied to the current state.

 Initialize a new ‗best state‘ equal to the current state and apply it to produce a

new state.

 Perform these to evaluate the new state

 If the current state is a goal state, then stop and return success.

 If it is better than the best state, then make it the best state else

continue the loop with another new state.

 Make the best state as the current state and go to Step 2 of the second point.

 Exit from the function.

3. Stochastic hill climbing:

It does not examine all the neighboring nodes before deciding which node to select. It just

selects a neighboring node at random and decides (based on the amount of improvement in

that neighbor) whether to move to that neighbor or to examine another.

 Evaluate the initial state. If it is a goal state then stop and return success. Otherwise, make

the initial state the current state.

 Repeat these steps until a solution is found or the current state does not change.

 Select a state that has not been yet applied to the current state.

 Apply the successor function to the current state and generate all the neighbor

states.

 Among the generated neighbor states which are better than the current state

choose a state randomly (or based on some probability function).

 If the chosen state is the goal state, then return success, else make it the current

state and repeat step 2 of the second point.

 Exit from the function.

2.1.1.2 :State Space diagram for Hill Climbing

The state-space diagram is a graphical representation of the set of states our search algorithm

can reach vs the value of our objective function(the function which we wish to maximize).

 X-axis: denotes the state space ie states or configuration our algorithm may reach.

 Y-axis: denotes the values of objective function corresponding to a particular state.

The best solution will be a state space where the objective function has a maximum

value(global maximum).

Different regions in the State Space Diagram:

 Local maximum: It is a state which is better than its neighboring state however there exists

a state which is better than it(global maximum). This state is better because here the value

of the objective function is higher than its neighbors.

 Global maximum: It is the best possible state in the state space diagram. This is because, at

this stage, the objective function has the highest value.

 Plateau/flat local maximum: It is a flat region of state space where neighboring states have

the same value.

 Ridge: It is a region that is higher than its neighbors but itself has a slope. It is a special

kind of local maximum.

 Current state: The region of the state space diagram where we are currently present during

the search.

 Shoulder: It is a plateau that has an uphill edge.

2.1.1.3 :Problems in different regions in Hill climbing

Hill climbing cannot reach the optimal/best state(global maximum) if it enters any of the

following regions :

 Local maximum: At a local maximum all neighboring states have a value that is worse

than the current state. Since hill-climbing uses a greedy approach, it will not move to the

worse state and terminate itself. The process will end even though a better solution may

exist.

To overcome the local maximum problem: Utilize the backtracking technique. Maintain a

list of visited states. If the search reaches an undesirable state, it can backtrack to the

previous configuration and explore a new path.

 Plateau: On the plateau, all neighbors have the same value. Hence, it is not possible to

select the best direction .

 To overcome plateaus: Make a big jump. Randomly select a state far away from the current

state. Chances are that we will land in a non-plateau region.

https://www.geeksforgeeks.org/backtracking-set-1-the-knights-tour-problem/

 Ridge: Any point on a ridge can look like a peak because movement in all possible

directions is downward. Hence the algorithm stops when it reaches this state.

To overcome Ridge: In this kind of obstacle, use two or more rules before testing. It

implies moving in several directions at once.

2.1.2 SIMULATED ANNEALING

2.1.2.1 : The Concept

SA algorithm is one of the most preferred heuristic methods for solving the optimization

problems. Kirkpatrick et al. introduced SA by inspiring the annealing procedure of the metal

working . Annealing procedure defines the optimal molecular arrangements of metal particles

where the potential energy of the mass is minimized and refers cooling the metals gradually after

subjected to high heat. In general manner, SA algorithm adopts an iterative movement according

to the variable temperature parameter which imitates the annealing transaction of the metals .

A simple optimization algorithm compares iteratively the outputs of the objective functions

running with current and neighboring point in the domain so that, if the neighboring point

generates better result than the current one, then it is saved as base solution for the next iteration.

Otherwise, the algorithm terminates the procedure without searching the wider domain for better

results. So that, the algorithm is prone to be getting trapped in local minima or maxima. Instead,

SA algorithm proposes an effective solution to this problem as incorporating two iterative loops

which are the cooling procedure for the annealing process and Metropolis criterion . Basic idea

behind the Metropolis criterion is to be executed randomly to extra search the neighborhood of

the candidate solution to avoid being trapped to local extreme points.

To be more precise, let us consider the minimization problem and define an objective

function f(xi) corresponding to the argument set of xi={x1,x2,⋯,xn} with n∈R.

Therefore, if f(xi+1)<f(xi), then take xi+1 as a new candidate extreme point to check.

Otherwise, define w=exp [−{f(xi+1)−f(xi)}/Tc]

where Tc is the current temperature parameter and generate a random number s, such

that 0<s<1 . Then, if the relation of w>s is true, you also accept the xi+1 as a new candidate, else

reject and go back to previous step and generate another s. Hence, Metropolis criterion allows for

the motion of the current step to a certain extent even the objective function‘s trajectory is

getting convergent through the potential local minimum point.

On the other hand, Metropolis algorithm proposes solution for a constant temperature. So that,

for larger values of Tc, the algorithm requires wider search area. Therefore, this raises the

probability for reaching the global minimum. Besides that, as the iterative motion of algorithm is

https://www.sciencedirect.com/topics/engineering/annealing-process
https://www.sciencedirect.com/topics/engineering/minimization-problem
https://www.sciencedirect.com/topics/engineering/local-minimum-point

initialized randomly, it may skips the global minima or adopts non precision approach through

the extreme point. On the contrary, for smaller values of Tc, it requires smaller search area and

this case may give rise of being trapped in local minima. For removing this handicap, SA offers

an iterative solution as incorporating nested loops for changing the temperature parameter and

the solution point. The motion of SA algorithm begins with a larger value of temperature to

execute the iteration for inner loop and immediately, the point leads the best objective function in

the current inner loop is assigned as new candidate solution. Then, the outer loop is run by

incrementing the temperature and updating the starting point. This iterative process continues

until reaching the lowest limit of temperature or realizing the predetermined number of

iterations.

2.1.2.2: The Algorithm / Pesudocode

Here are the steps of the algorithm:

1. Initialization: Start with an initial solution to the problem. This can be a random solution

or a solution obtained using some method.

2. Define parameters: Set the initial temperature and cooling schedule. Typically, initial

temperature T_0=100T0=100 and cooling are done by formula Tnew=αTcurrent, where

α∈[0.7,0.99] is a cooling factor. Set number of iterations per temperature: typically, this

number is between 100100 and 10001000.

3. Iterative process: Perform iterations until a stopping criterion is met. This can be a

maximum number of iterations or reaching a final temperature.

4. Generate a neighboring solution: Modify the current solution to generate a neighboring

solution. The modification can be swapping variables or changing values.

5. Evaluate the neighboring solution: Calculate the cost or objective function value for the

neighboring solution, indicating its quality. The cost value f(S_{neighbor})should be

evaluated for neighbor solution S_{neighbor} .

6. Acceptance criterion: Determine whether to accept the neighboring solution as the new

current solution. If the neighboring solution is better than the current solution, accept it:

S_{new}= S_{neighbor} if f(S_{current}) > f(S_{neighbor}).

*As in this case, Cost Minimization problem is assumed .Thus , here the neighbor is

considered to be better if the cost function of neighbor is lower (f(S_{current}) >

f(S_{neighbor}) and considered to be worse if the cost function of neighbor is higher

(f(S_{current}) < f(S_{neighbor})*

If the neighboring solution is worse, accept it with a probability determined by the

acceptance probability formula: Snew=Sneighbor

https://www.sciencedirect.com/topics/engineering/predetermined-number

if P= exp{−(f(Sneighbor)−f(Scurrent))}>r, where r∈[0,1] is some random number.

The neighbor will be chosen with this probability P.

7. Update the temperature: Adjust the temperature according to the cooling schedule: Tnew

=αTcurrent. T (new)= T (current)/{(No of iterations)+1}

8. Repeat: Go back to step four and continue the iterative process.

9. Termination: Stop the algorithm when the stopping criterion is met.

10. Output: Return the best solution (with the lowest cost value) obtained during the

iterations. This solution approximates the global optimum solution.

Flowchart of SA technique.

Note that, it is very critical to choose the temperature changing steps in the outer loop and

randomly step sizes of inner loop. If one chooses Tc very large, then w>r is satisfied at any

iteration so that the algorithm will be terminated most likely at a random minimum in the domain

of the function to be optimized. Besides, if one chooses Tc very small the condition w>s never

be satisfied and the motion will be terminated at the first minima. Moreover, selecting rating of

temperature change has a crucial effect on the quality of the solution . For preventing of those

handicaps, SA algorithm deals with the optimization problem with large value of temperature

and travels a large number of points in the domain of the objective function. For the further

steps, it decreases the temperature gradually and narrows the search sector by adopting the local

minimum point at the previous inner loop. By this way, it eliminates the local minimum points

from the search space, and also, it converges to the global minimum point sensitively.

Consequently, it can be commented that SA is very preferable technique among the other

heuristic approaches as providing practical randomness into the search to avoid the local extreme

points. On the other hand, SA contains a trade-off between computational time and the

sensitivity of the solution.

2.1.3 Local Search in Continuous Space :

A continuous action space has an infinite branching factor, and thus can‘t be handled by most of

the algorithms what we discussed previously (with the exception of first-choice hill climbing and

simulated annealing).

One way to deal with a continuous state space is to discretize it. Instead of allowing any point in

continuous two-dimensional space, we could limit them to fixed points with spacing of size.We

can then apply any of our local search algorithms to this discrete space. The states are defined by

n variables (defined by an n-dimensional vector of variables x.)

Often we have an objective function expressed in a mathematical form such that we can use

calculus to solve the problem analytically rather than empirically. Many methods attempt to use

the gradient of the landscape to find amaximum. The gradient of the objective function is a

vector ∇f that gives the magnitude and direction of the steepest slope.

Can perform steepest-ascent hill climbing by updating the current state according to the

formula x ← x + α▽f(x) , αis the step size (a small constant). If the objection function f is not

available in a differentiable form, use empirical gradient search.

 Often resists a closed-form solution

 Fake up an empirical gradient

 Amounts to greedy hill climbing in discretized statespace

 Can employ Newton-Raphson Method to findmaxima.

 Continuous problems have similar problems: plateaus, ridges, local maxima,etc.

Line search: tries to overcome the dilemma of adjusting α by extending the current gradient

direction—repeatedly doubling αuntil f starts to decrease again. The point at which this occurs

becomes the new current state.

Newton-Raphson method:Another most effective algorithm is the venerable Newton-Raphson

method. This is a general technique for finding roots of functions- that is, solving equations of

the form g(x)=0. It works by computing a new estimate for the root x according to newton‘s

formula

 .

To find a maximum or minimum of f,we need to find x such that the gradient is a zero vector

(i.e.,∇). Thus, g(x)is Newton‘s formula becomes .,∇ , and the update equation can

be written in matrix-vector form as

Hf(x) is the Hessian matrix of second derivatives, Hij =

Constrained optimization: An optimization problem is constrained if solutions must satisfy

some hard constraints on the values of the variables. (e.g. : linear programming problems).

 Many local search methods apply also to problems in continuous spaces. Linear programming

and convex optimization problems obey certain restrictions on the shape of the state space and

the nature of the objective function, and admit polynomial-time algorithms that are oftenly

extremely efficient in practice.

2.1.4 Searching with nondeterministic actions

 When the environment is either partially observable or nondeterministic (or both), the

future percepts cannot be determined in advance, and the agent‘s future actions will

depend on those future percepts.

 In partially observable and nondeterministic environments, the solution to a problem is

no longer a sequence, but rather a conditional plan (sometimes called a contingency plan

or a strategy).

Nondeterministic problems:

Transition model is defined by RESULTS function that returns a set of possible outcome states;

Instead of defining the transition model by a RESULT function that returns a single outcome

state, we use a RESULT function that returns a set of possible outcome states.

RESULT(1,SUCK)={5,7}

Solution is not a sequence but a contingency plan (strategy),

e.g. [Suck, if State = 5 then [Right, Suck] else []];

 In nondeterministic environments, agents can apply AND-OR search to generate contingent

plans that reach the goal regardless of which outcomes occur during execution.

AND-OR search trees

 OR nodes: In a deterministic environment, the only branching is introduced by the agent‘s own

choices in each state, we call these nodes OR nodes.

AND nodes: In a nondeterministic environment, branching is also introduced by the

environment‘s choice of outcome for each action, we call these nodes AND nodes.

AND-OR tree: OR nodes and AND nodes alternate. States nodes are OR nodes where some

action must be chosen. At the AND nodes (shown as circles), every outcome must be handled.

A solution (shown in bold lines) for an AND-OR search problem is a subtree that

1) has a goal node at every leaf;

2) specifies one action at each of its OR nodes;

3) includes every outcome branch at each of its AND nodes.

A recursive, depth-first algorithm for AND-OR graph search

 Cyclic solution

 Cyclic solution: keep trying until it works. We can express this solution by adding a label to

denote some portion of the plan and using the label later instead of repeating the plan itself. E.g.:

[Suck, L1: Right, if State = 5 then L1 else Suck]. (or ―while State = 5 do Right‖).

 2.1.5 Searching with partial observatioins

Belief state: The agent's current belief about the possible physical states it might be in, given the

sequence of actions and percepts up to that point.

 Standard search algorithms can be applied directly to belief-state space to solve sensorless

problems, and belief-state AND-OR search can solve general partially observable problems.

Incremental algorithms that construct solutions state-by-state within a belief state are often more

efficient.

 1. Searching with no observation

When the agent's percepts provide no information at all, we have a sensorless problem.

To solve sensorless problems, we search in the space of belief states rather than physical

states. In belief-state space, the problem is fully observable, the solution is always a sequence of

actions.

Belief-state problem can be defined by: (The underlying physical problem P is defined by

ACTIONSP, RESULTP, GOAL-TESTP and STEP-COSTP)

·Belief states: Contains every possible set of physical states. If P has N states, the sensorless

problem has up to 2^N states (although many may be unreachable from the initial state).

·Initial states: Typically the set of all states in P.

·Actions:

a. If illegal actions have no effect on the environment, take the union of all the actions in any of

the physical states in the current belief b:

ACTIONS(b) =

b. If illegal actions are extremely dangerous, take the intersection.

·Transition model:

a. For deterministic actions,

b' = RESULT(b,a) = {s' : s' = RESULTP(s,a) and s∈b}. (b' is never larger than b).

b. For nondeterministic actions,

b' = RESULT(b,a) = {s' : s' = RESULTP(s,a) and s∈b} = (b' may be larger than b)

The process of generating the new belief state after the action is called the prediction step.

·Goal test: A belief state satisfies the goal only if all the physical states in it satisfy GOAL-

TESTP.

·Path cost

 If an action sequence is a solution for a belief state b, it is also a solution for any subset of b.

Hence, we can discard a path reaching the superset if the subset has already been generated.

Conversely, if the superset has already been generated and found to be solvable, then any subset

is guaranteed to be solvable.

 Main difficulty: The size of each belief state.

Solution:

a. Represent the belief state by some more compact description;

b. Avoid the standard search algorithm, develop incremental belief state search algorithms

instead.

Incremental belief-state search: Find one solution that works for all the states, typically able to

detect failure quickly.

 2. Searching with observations

When observations are partial, The ACTIONS, STEP-COST, and GOAL-TEST are constructed

form the underlying physical problem just as for sensorless problems.

·Transition model: We can think of transitions from one belief state to the next for a particular

action as occurring in 3 stages.

The prediction stage is the same as for sensorless problem, given the action a in belief state b, the

predicted belief state is

The observation prediction stage determines the set of percepts o that could be observed in the

predicted belief state:

The update stage determines, for each possible percept, the belief state that would result from the

percept. The new belief state bo is the set of states in that could have produced the percept:

In conclusion:

RESULTS(b,a) = { bo : bo = UPDATE(PREDICT(b,a),o) and o∈POSSIBLE-

PERCEPTS(PREDICT(b,a))}

Search algorithm return a conditional plan that test the belief state rather than the actual state.

 Agent for partially observable environments is similar to the simple problem-solving agent

(formulates a problem, calls a search algorithm, executes the solution).

Main difference:

1) The solution will be a conditional plan rather than a sequence.

2) The agent will need to maintain its belief state as it performs actions and receives percepts.

Given an initial state b, an action a, and a percept o, the new belief state is

b‘ = UPDATE(PREDICT(b, a), o). //recursive state estimator

Sate estimation: a.k.a. monitoring or filtering, a core function of intelligent system in partially

observable environments—maintaining one‘s belief state.

 2.1.6 Online search Agents

Online search is a necessary idea for unknown environments. Online search agent interleaves

computation and action: first it takes an action, then it observes the environment and computes

the next action.

1. Online search problem

Assume a deterministic and fully observable environment, the agent only knows:

·ACTION(s): returns a list of actions allowed in state s;

·c(s, a, s‘): The step-cost function, cannot be used until the agent knows that s‘ is the outcome;

·GOAL-TEST(s).

·The agent cannot determine RESULT(s, a) except by actually being in s and doing a.

·The agent might have access to an admissible heuristic function h(s) that estimates the distance

from the current state to a goal state.

Competitive ratio: The cost (the total path cost of the path that the agent actually travels) / the

actual shortest path (the path cost of the path the agent would follow if it knew the search space

in advance). The competitive ratio is expected to be as small as possible.

In some case the best achievable competitive ratio is infinite, e.g. some actions are irreversible

and might reach a dead-end state. No algorithm can avoid dead ends in all state spaces.

Safely explorable: some goal state is reachable from every reachable state. E.g. state spaces with

reversible actions such as mazes and 8-puzzles.

No bounded competitive ratio can be guaranteed even in safely explorable environments if there

are paths of unbounded cost.

 2. Online search agents

ONLINE-DFS-AGENT works only in state spaces where the actions are reversible.

RESULT: a table the agent stores its map, RESULT[s, a] records the state resulting from

executing action a in state s.

Whenever an action from the current sate has not been explored, the agent tries that action.

When the agent has tried all the actions in a state, the agent in an online search backtracks

physically (in a depth-first search, means going back to the state from which the agent most

recently entered the current sate).

 3. Online local search

Exploration problems arise when the agent has no idea about the satate and actions of its

environment. For safely explorable environments, online search agents can build a map and find

a goal if one exists. Updating heuristic estimates from experience provides an effective method

to escape from local minima.

Random walk: Because online hill-climbing search cannot use restart(because the agent cannot

transport itself to a new state), can use random walk instead. A random walk simply selects at

random one of the available actions from the current state, preference can be given to actions that

have not yet been tried.

Basic idea of online agent: Random walk will eventually find a goal or complete its exploration

if the space is finite, but can be very slow. A more effective approach is to store a ―current best

estimate‖ H(s) of the cost to reach the goal from each state that has been visited. H(s) starts out

being the heuristic estimate h(s) and is updated as the agent gains experience in the state space.

If the agent is stuck in a flat local minimum, the agent will follow what seems to be the best path

to the goal given the current cost estimates for its neighbors. The estimate cost to reach the goal

through a neighbor s‘ is the cost to get to s‘ plus the estimated cost to get to a goal from there,

that is, c(s, a, s') + H(s').

LRTA*: learning real-time A*. It builds a map of the environment in the result table, update the

cost estimate for the state it has just left and then chooses the ―apparently best‖ move according

to its current cost estimates.

 Actions that have not yet been tried in a state s are always assumed to lead immediately to the

goal with the least possible cost (a.k.a.h(s)), this optimism under uncertainty encourages the

agent to explore new, possible promising paths.

2.2 Constraint Satisfaction Problem (CSP)

Sometimes a problem is not embedded in a long set of action sequences but

requires picking the best option from available choices. A good general-purpose

problem solving technique is to list the constraints of a situation (either negative

constraints, like limitations, or positive elements that you want in the final

solution). Then pick the choice that satisfies most of the constraints.

Formally speaking, a constraint satisfaction problem(orCSP)is defined by

a set of variables,X1;X2;:::;Xn, and

a set of constraints, C1;C2; : : : ;Cm.

Domain D {D1,D2,……Dn}

Each variable Xi has an Nonempty domain Di of possible values. Each constraint Ci

involves some subset of t variables and specifies the allowable combinations of values for

that subset. A state of the problem is defined by an assignment of values to some or all of

the variables, {Xi = vi; Xj =vj ; : : :}

 An assignment that does not violate any constraints is called a consistent or legal

assignment.

 A complete assignment is one in which every variable is mentioned, and a solution

to a CSP is a complete assignment that satisfies all the constraints.

 Partial assignment is one that leaves some variables unassigned and a partial

solution is a partial assignment that is consistent.

 Some CSPs also require a solution that maximizes an objective function.

CSP FORMULATION

CSP can be given an incremental formulation as a standard search problem as follows:

1. Initial state: the empty assignment fg, in which all variables are unassigned.

2. Successor function: a value can be assigned to any unassigned variable,

provided that it does not conflict with previously assignedvariables.

3. Goal test: the current assignment iscomplete.

4. Path cost: a constant cost for everystep

Examples:

The best-known category of continuous-domain CSPs is that of linear

programming problems, where constraints must be linear inequalities forming a

convex region.

Example: Crypt arithmetic puzzles.

 A cryptarithmetic problem. Each letter stands for a distinct digit; the aim is to find a

substitution of digits for letters such that the resulting sum is arithmetically correct, with

the added restriction that no leading zeroes are allowed.

 The constraint hypergraph for the cryptarithmetic problem, showing the ALLdiff

constraint (square box at the top) as well as the column addition constraints (four square

boxes in the middle). The variables C1, C2, and C3 represent the carry digits for the

three columns from right to left.

Example: The map coloring problem.

The task of coloring each region red, green or blue in such a way that no

neighboring regions have the same color.

We are given the task of coloring each region red, green, or blue in such a

way that the neighboring regions must not have the same color.

 To formulate this as CSP, we define the variable to be the regions: WA, NT, Q,

NSW, V, SA, and T.

 The domain of each variable is the set {red, green, blue}.

 The constraints require neighboring regions to have distinct colors: for example,

the allowable combinations for WA and NT are the pairs

{(red,green),(red,blue),(green,red),(green,blue),(blue,red),(blue,green)}. (The

constraint can also be represented as the in equalityWA≠NT).

 There are many possible solutions, such as {WA = red, NT = green, Q = red, NSW

= green, V = red, SA = blue, T = red}.

 Map of Australia showing each of its states and territories

Constraint Graph: A CSP is usually represented as an undirected graph,

called constraint graph where the nodes are the variables and the edges

are the binaryconstraints.

The map-coloring problem represented as a constraint graph. CSP can be viewed as a

standard search problem as follows:

> Initial state : the empty assignment {},in which all variables areunassigned.

> Successor function: a value can be assigned to any unassigned

variable, provided that it does not conflict with previously

assignedvariables.

> Goal test: the current assignment is complete.

> Path cost: a constant cost(E.g.,1) for everystep.

Example : 4- queens problem

In 4- queens problem, we have 4 queens to be placed on a 4*4 chessboard, satisfying the

constraint that no two queens should be in the same row, same column, or in same diagonal.

1. Define the Variables:

 Create four variables, one for each column of the chessboard. Each variable

represents the row position of the queen in its respective column. Let's call these

variables Q1, Q2, Q3, and Q4.

2. Define the Domain:

 The domain of each variable should be the set {1, 2, 3, 4}, representing the four

rows of the chessboard.

3. Define the Constraints:

 Ensure that no two queens can share the same row by adding the constraint:

 Q1 ≠ Q2, Q1 ≠ Q3, Q1 ≠ Q4, Q2 ≠ Q3, Q2 ≠ Q4, Q3 ≠ Q4

4.

 Ensure that no two queens can share the same column:

 This constraint is automatically satisfied because we have distinct

variables for each column.

 Ensure that no two queens can share the same diagonal:

 Add constraints to handle the diagonal threats:

1. |Q1 - Q2| ≠ 1

2. |Q1 - Q3| ≠ 2

3. |Q1 - Q4| ≠ 3

4. |Q2 - Q3| ≠ 1

5. |Q2 - Q4| ≠ 2

6. |Q3 - Q4| ≠ 1

5. Search for a Solution:

 You can use a CSP solver, such as backtracking or constraint propagation,

to search for a solution to this CSP problem.

Now, we have successfully placed four queens on the chessboard without any of them

threatening each other. This is a valid solution to the 4-Queens problem using CSP. You can

explore different combinations to find all possible solutions or use a CSP solver to automate the

process for larger N-Queens problems.

Example Job Scheduling Problem

We consider a small part of the car assembly, consisting of 15 tasks: install axles (front and

back), affix all four wheels (right and left, front and back), tighten nuts for each wheel, affix

hubcaps, and inspect the final assembly. We can represent the tasks with 15 variables:

Next, we represent precedence constraints between individual tasks. Whenever a task T1 must

occur before task T2, and task T1 takes duration D1 to complete, we add an arithmetic constraint

of the form

In our example, the axles have to be in place before the wheels are put on, and it takes 10

minutes to install an axle, so we write

Next we say that for each wheel, we must affix the wheel (which takes 1 minute), then tighten

the nuts (2 minutes), and finally attach the hubcap (1 minute, but not represented yet):

Suppose we have four workers to install wheels, but they have to share one tool that helps put the

axle in place. We need a disjunctive constraint to say that AxleF and AxleB must not overlap in

time; either one comes first or the other does:

We also need to assert that the inspection comes last and takes 3 minutes. For every variable

except Inspect we add a constraint of the form

Finally, suppose there is a requirement to get the whole assembly done in 30 minutes. We can

achieve that by limiting the domain of all variables:

Di={0,1,2,3,...,30}.

This particular problem is trivial to solve, but CSPs have been successfully applied to jobshop

scheduling problems like this with thousands of variables.

Variation of CPS
Discrete variables :

 Finite domains: . size d O(dn) complete assignments E.g. Boolean CSPs, include.

Boolean satisfiability (NP-complete).

 Infinite domains (integers, strings, etc.)

o E.g. job scheduling, variables are start/end days for each job

o Need a constraint language e.g StartJob1 +5 ≤ StartJob3.

o Linear constraints solvable, nonlinear undecidable.

Continuous variables:

e.g. start/end times for Hubble Telescope observations.

Linear constraints solvable in poly time by LP methods.

Varieties of constraints:

 Unary constraints involve a single variable. greene.g. SA

 Binary constraints involve pairs of variables. WAe.g. SA

 Higher-order constraints involve 3 or more variables. e.g. cryptharithmetic column

constraints.

 Preference (soft constraints) e.g. red is better than green often representable by a cost

for each variable assignment constrained optimization problems.

CONSTRAINT PROPOGATION

constraint propagation: Using the constraints to reduce the number of legal values for a

variable, which in turn can reduce the legal values for another variable, and so on.

local consistency: If we treat each variable as a node in a graph and each binary constraint as an

arc, then the process of enforcing local consistency in each part of the graph causes inconsistent

values to be eliminated throughout the graph.

There are different types of local consistency:

Node consistency
A single variable (a node in the CSP network) is node-consistent if all the values in the

variable‘s domain satisfy the variable‘s unary constraint.

We say that a network is node-consistent if every variable in the network is node-consistent.

Arc consistency
A variable in a CSP is arc-consistent if every value in its domain satisfies the variable‘s binary

constraints.

Xi is arc-consistent with respect to another variable Xj if for every value in the current domain

Di there is some value in the domain Dj that satisfies the binary constraint on the arc (Xi, Xj).

A network is arc-consistent if every variable is arc-consistent with every other variable.

Arc consistency tightens down the domains (unary constraint) using the arcs (binary constraints).

Path consistency
Path consistency: A two-variable set {Xi, Xj} is path-consistent with respect to a third variable

Xm if, for every assignment {Xi = a, Xj = b} consistent with the constraint on {Xi, Xj}, there is an

assignment to Xm that satisfies the constraints on {Xi, Xm} and {Xm, Xj}.

Path consistency tightens the binary constraints by using implicit constraints that are inferred by

looking at triples of variables.

K-consistency
K-consistency: A CSP is k-consistent if, for any set of k-1 variables and for any consistent

assignment to those variables, a consistent value can always be assigned to any kth variable.

1-consistency = node consistency; 2-consisency = arc consistency; 3-consistensy = path

consistency.

A CSP is strongly k-consistent if it is k-consistent and is also (k - 1)-consistent, (k – 2)-

consistent, … all the way down to 1-consistent.

A CSP with n nodes and make it strongly n-consistent, we are guaranteed to find a solution in

time O(n
2
d). But algorithm for establishing n-consitentcy must take time exponential in n in the

worse case, also requires space that is exponential in n.

Global constraints
A global constraint is one involving an arbitrary number of variables (but not necessarily all

variables).

Backtracking search for CSPs
Backtracking search, a form of depth-first search, is commonly used for solving CSPs. Inference

can be interwoven with search.

Commutativity: CSPs are all commutative. A problem is commutative if the order of

application of any given set of actions has no effect on the outcome.

Backtracking search: A depth-first search that chooses values for one variable at a time and

backtracks when a variable has no legal values left to assign.

Backtracking algorithm repeatedly chooses an unassigned variable, and then tries all values in

the domain of that variable in turn, trying to find a solution. If an inconsistency is detected, then

BACKTRACK returns failure, causing the previous call to try another value.

There is no need to supply BACKTRACKING-SEARCH with a domain-specific initial state,

action function, transition model, or goal test.

BACKTRACKING-SARCH keeps only a single representation of a state and alters that

representation rather than creating a new ones.

To solve CSPs efficiently without domain-specific knowledge, address following questions:

1)function SELECT-UNASSIGNED-VARIABLE: which variable should be assigned next?

 function ORDER-DOMAIN-VALUES: in what order should its values be tried?

2)function INFERENCE: what inferences should be performed at each step in the search?

3)When the search arrives at an assignment that violates a constraint, can the search avoid

repeating this failure?

1. Variable and value ordering

SELECT-UNASSIGNED-VARIABLE

Variable selection—fail-first

Minimum-remaining-values (MRV) heuristic: The idea of choosing the variable with the

fewest ―legal‖ value. A.k.a. ―most constrained variable‖ or ―fail-first‖ heuristic, it picks a

variable that is most likely to cause a failure soon thereby pruning the search tree. If some

variable X has no legal values left, the MRV heuristic will select X and failure will be detected

immediately—avoiding pointless searches through other variables.

E.g. After the assignment for WA=red and NT=green, there is only one possible value for SA, so

it makes sense to assign SA=blue next rather than assigning Q.

[Powerful guide]
Degree heuristic: The degree heuristic attempts to reduce the branching factor on future choices

by selecting the variable that is involved in the largest number of constraints on other unassigned

variables. [useful tie-breaker]

e.g. SA is the variable with highest degree 5; the other variables have degree 2 or 3; T has degree

0.

ORDER-DOMAIN-VALUES

Value selection—fail-last

If we are trying to find all the solution to a problem (not just the first one), then the ordering does

not matter.

Least-constraining-value heuristic: prefers the value that rules out the fewest choice for the

neighboring variables in the constraint graph. (Try to leave the maximum flexibility for

subsequent variable assignments.)
e.g. We have generated the partial assignment with WA=red and NT=green and that our next

choice is for Q. Blue would be a bad choice because it eliminates the last legal value left for Q‘s

neighbor, SA, therefore prefers red to blue.

The minimum-remaining-values and degree heuristic are domain-independent methods for

deciding which variable to choose next in a backtracking search. The least-constraining-

value heuristic helps in deciding which value to try first for a given variable.

2. Interleaving search and inference
INFERENCE

forward checking: [One of the simplest forms of inference.] Whenever a variable X is assigned,

the forward-checking process establishes arc consistency for it: for each unassigned variable Y

that is connected to X by a constraint, delete from Y‘s domain any value that is inconsistent with

the value chosen for X.

There is no reason to do forward checking if we have already done arc consistency as a

preprocessing step.

Advantage: For many problems the search will be more effective if we combine the MRV

heuristic with forward checking.

Disadvantage: Forward checking only makes the current variable arc-consistent, but doesn‘t look

ahead and make all the other variables arc-consistent.

MAC (Maintaining Arc Consistency) algorithm: [More powerful than forward checking,

detect this inconsistency.] After a variable Xi is assigned a value, the INFERENCE procedure

calls AC-3, but instead of a queue of all arcs in the CSP, we start with only the arcs(Xj, Xi) for all

Xj that are unassigned variables that are neighbors of Xi. From there, AC-3 does constraint

propagation in the usual way, and if any variable has its domain reduced to the empty set, the call

to AC-3 fails and we know to backtrack immediately.

3. Intelligent backtracking

chronological backtracking: The BACKGRACKING-SEARCH in Fig 6.5. When a branch of the

search fails, back up to the preceding variable and try a different value for it. (The most recent

decision point is revisited.)

e.g.

Suppose we have generated the partial assignment {Q=red, NSW=green, V=blue, T=red}.

When we try the next variable SA, we see every value violates a constraint.

We back up to T and try a new color, it cannot resolve the problem.

Intelligent backtracking: Backtrack to a variable that was responsible for making one of the

possible values of the next variable (e.g. SA) impossible.

Conflict set for a variable: A set of assignments that are in conflict with some value for that

variable.

(e.g. The set {Q=red, NSW=green, V=blue} is the conflict set for SA.)

backjumping method: Backtracks to the most recent assignment in the conflict set.

(e.g. backjumping would jump over T and try a new value for V.)

Forward checking can supply the conflict set with no extra work.

Whenever forward checking based on an assignment X=x deletes a value from Y‘s domain, add

X=x to Y‘s conflict set;

If the last value is deleted from Y‘s domain, the assignment in the conflict set of Y are added to

the conflict set of X.

In fact,every branch pruned by backjumping is also pruned by forward checking. Hence simple

backjumping is redundant in a forward-checking search or in a search that uses stronger

consistency checking (such as MAC).

Conflict-directed backjumping:
e.g.

consider the partial assignment which is proved to be inconsistent: {WA=red, NSW=red}.

We try T=red next and then assign NT, Q, V, SA, no assignment can work for these last 4

variables.

Eventually we run out of value to try at NT, but simple backjumping cannot work because NT

doesn‘t have a complete conflict set of preceding variables that caused to fail.

The set {WA, NSW} is a deeper notion of the conflict set for NT, caused NT together with any

subsequent variables to have no consistent solution. So the algorithm should backtrack to NSW

and skip over T.

A backjumping algorithm that uses conflict sets defined in this way is called conflict-direct

backjumping.

How to Compute:
When a variable‘s domain becomes empty, the ―terminal‖ failure occurs, that variable has a

standard conflict set.

Let Xj be the current variable, let conf(Xj) be its conflict set. If every possible value for Xj fails,

backjump to the most recent variable Xi in conf(Xj), and set

conf(Xi) ← conf(Xi)∪conf(Xj) – {Xi}.

The conflict set for an variable means, there is no solution from that variable onward, given the

preceding assignment to the conflict set.

e.g.

assign WA, NSW, T, NT, Q, V, SA.

SA fails, and its conflict set is {WA, NT, Q}. (standard conflict set)

Backjump to Q, its conflict set is {NT, NSW}∪{WA,NT,Q}-{Q} = {WA, NT, NSW}.

Backtrack to NT, its conflict set is {WA}∪{WA,NT,NSW}-{NT} = {WA, NSW}.

Hence the algorithm backjump to NSW. (over T)

After backjumping from a contradiction, how to avoid running into the same problem again:

Constraint learning: The idea of finding a minimum set of variables from the conflict set that

causes the problem. This set of variables, along with their corresponding values, is called a no-

good. We then record the no-good, either by adding a new constraint to the CSP or by keeping a

separate cache of no-goods.

2.5 Local Search for CSPs

Local search algorithms for CSPs use a complete-state formulation: the initial state assigns a

value to every variable, and the search change the value of one variable at a time.

Local search algorithms are known to be highly effective in solving a wide range of Constraint

Satisfaction Problems (CSPs). These algorithms operate with a complete-state formulation,

meaning that they assign values to all variables within the problem, and their search process

involves making incremental changes to the value of one variable at a time. This approach is

illustrated using the 8-queens problem.

In Figure 6.8 we start on the left with a complete assignment to the 8 variables; typically this will

violate several constraints. We then randomly choose a conflicted variable, which turns out to

be Q8, the rightmost column. We‘d like to change the value to something that brings us closer to

a solution; the most obvious approach is to select the value that results in the minimum number

of conflicts with other variables—the min-conflicts heuristic.

Figure:A two-step solution using min-conflicts for an 8-queens problem. At each stage, a

queen is chosen for reassignment in its column. The number of conflicts (in this case, the

number of attacking queens) is shown in each square. The algorithm moves the queen to

the min-conflicts square, breaking ties randomly.

In the figure we see there are two rows that only violate one constraint; we pick Q8=3 (that is,

we move the queen to the 8th column, 3rd row). On the next iteration, in the middle board of the

figure, we select Q6 as the variable to change, and note that moving the queen to the 8th row

results in no conflicts. At this point there are no more conflicted variables, so we have a

solution.

The min-conflicts heuristic: In choosing a new value for a variable, select the value that results

in the minimum number of conflicts with other variables

The landscape of a CSP under the mini-conflicts heuristic usually has a series of plateau.

Simulated annealing and Plateau search (i.e. allowing sideways moves to another state with the

same score) can help local search find its way off the plateau. This wandering on the plateau can

be directed with tabu search: keeping a small list of recently visited states and forbidding the

algorithm to return to those tates.

Constraint weighting: a technique that can help concentrate the search on the important

constraints.

Each constraint is given a numeric weight Wi, initially all 1.

At each step, the algorithm chooses a variable/value pair to change that will result in the lowest

total weight of all violated constraints.

The weights are then adjusted by incrementing the weight of each constraint that is violated by

the current assignment.

Local search can be used in an online setting when the problem changes, this is particularly

important in scheduling problems.

2.6 The Structure of Problems

The structure of the problem is represented by the constraint graph, can be used to find solutions

quickly. Most of the approaches here also apply to other problems besides CSPs, such as

probabilistic reasoning.

Figure:2.6

1. The structure of constraint graph
The structure of the problem as represented by the constraint graph can be used to find solution

quickly.
e.g. The problem can be decomposed into 2 independent subproblems: Coloring T and coloring

the mainland.

Tree: A constraint graph is a tree when any two varyiable are connected by only one path.
Directed arc consistency (DAC): A CSP is defined to be directed arc-consistent under an

ordering of variables X1, X2, … , Xn if and only if every Xi is arc-consistent with each Xj for j>i.
By using DAC, any tree-structured CSP can be solved in time linear in the number of variables.

How to solve a tree-structure CSP:
Pick any variable to be the root of the tree;
Choose an ordering of the variable such that each variable appears after its parent in the tree.

(topological sort)
Any tree with n nodes has n-1 arcs, so we can make this graph directed arc-consistent in O(n)

steps, each of which must compare up to d possible domain values for 2 variables, for a total

time of O(nd
2
).

Once we have a directed arc-consistent graph, we can just march down the list of variables and

choose any remaining value.
Since each link from a parent to its child is arc consistent, we won‘t have to backtrack, and can

move linearly through the variables.

Figure 6.1: The TREE-CSP-SOLVER algorithm for solving tree-structured CSPs. If the CSP has

a solution, we will find it in linear time; if not, we will detect a contradiction.

Figure 6.2 The TREE-CSP-SOLVER algorithm for solving tree-structured CSPs. If the CSP has

a solution, we will find it in linear time; if not, we will detect a contradiction.

The general algorithm:

Choose a subset S of the CSP‘s variables such that the constraint graph becomes a tree after

removal of S. S is called a cycle cutset.

For each possible assignment to the variables in S that satisfies all constraints on S,

 (a) remove from the domain of the remaining variables any values that are inconsistent with the

assignment for S, and

 (b) If the remaining CSP has a solution, return it together with the assignment for S.

Time complexity: O(d
c
·(n-c)d

2
), c is the size of the cycle cut set.

Cutset conditioning: The overall algorithmic approach of efficient approximation algorithms to

find the smallest cycle cutset.

The first way to reduce a constraint graph to a tree involves assigning values to some variables

so that the remaining variables form a tree. Consider the constraint graph for Australia, shown

again in Figure a) Without South Australia, the graph would become a tree, as in (b).

Fortunately, we can delete South Australia (in the graph, not the country) by fixing a value

for SA and deleting from the domains of the other variables any values that are inconsistent with

the value chosen for SA.

Figure6.3 (a) The original constraint graph from Figure 6.1. (b) After the removal of SA, the

constraint graph becomes a forest of two trees.

Now, any solution for the CSP after SA and its constraints are removed will be consistent with

the value chosen for SA. (This works for binary CSPs; the situation is more complicated with

higher-order constraints.) Therefore, we can solve the remaining tree with the algorithm given

above and thus solve the whole problem. Of course, in the general case (as opposed to map

coloring), the value chosen for SA could be the wrong one, so we would need to try each possible

value. The general algorithm is as follows:

1. Choose a subset S of the CSP‘s variables such that the constraint graph becomes a tree after

removal of S. S is called a cycle cutset.

2. For each possible assignment to the variables in S that satisfies all constraints on S,

(a) remove from the domains of the remaining variables any values that are inconsistent with the

assignment for S, and

(b) if the remaining CSP has a solution, return it together with the assignment for S.

Tree decomposition

The second way to reduce a constraint graph to a tree is based on constructing a tree

decomposition of the constraint graph: a transformation of the original graph into a tree where

each node in the tree consists of a set of variables, as in Figure. A tree decomposition must

satisfy these three requirements:

 Every variable in the original problem appears in at least one of the tree nodes.

 If two variables are connected by a constraint in the original problem, they must appear together

(along with the constraint) in at least one of the tree nodes.

 If a variable appears in two nodes in the tree, it must appear in every node along the path

connecting those nodes.

Figure 6.4 A tree decomposition of the constraint graph in Figure 6.3(a)

Once we have a tree-structured graph, we can apply TREE−CSP−SOLVER to get a solution

in O(nd
2
) time, where n is the number of tree nodes and d is the size of the largest domain. But note that

in the tree, a domain is a set of tuples of values, not just individual values.

For example, the top left node in Figure 6.13 represents, at the level of the original problem, a

subproblem with variables {WA,NT,SA}, domain {red,green,blue}, and constraints WA

\neq NT,SA≠NT,WA≠SA. At the level of the tree, the node represents a single variable, which

we can call SANTW A, whose value must be a three-tuple of colors, such as (red,green,blue),

but not (red, red, blue), because that would violate the constraint SA≠NT from the original

problem. We can then move from that node to the adjacent one, with the variable we can

call SANTQ, and find that there is only one tuple, (red, green, blue), that is consistent with the

choice for SANTWA. The exact same process is repeated for the next two nodes, and

independently we can make any choice for T.

Value symmetry

So far, we have looked at the structure of the constraint graph. There can also be important

structure in the values of variables, or in the structure of the constraint relations themselves.

Consider the map-coloring problem with d colors. For every consistent solution, there is actually

a set of d! solutions formed by permuting the color names. For example, on the Australia map

we know that WA, NT, and SA must all have different colors, but there are 3!=6 ways to assign

three colors to three regions. This is called value symmetry. We would like to reduce the search

space by a factor of d! by breaking the symmetry in assignments. We do this by introducing a

symmetry-breaking constraint. For our example, we might impose an arbitrary ordering

constraint, NT<SA<WA, that requires the three values to be in alphabetical order. This constraint

ensures that only one of the d! solutions is possible: {NT=blue,SA=green,WA=red}.

For map coloring, it was easy to find a constraint that eliminates the symmetry. In general it is

NP-hard to eliminate all symmetry, but breaking value symmetry has proved to be important and

effective on a wide range of problems.

UNIT III: Propositional Logic: Knowledge-Based Agents, The Wumpus World, Logic,

Propositional Logic, Propositional Theorem Proving: Inference and proofs, Proof by resolution,

Horn clauses and definite clauses, Forward and backward chaining, Effective Propositional Model

Checking, Agents Based on Propositional Logic.

KNOWLEDGE-BASED AGENTS

The central component of a knowledge-based agent is its knowledge base, or KB. A

knowledge base is a set of sentences. (Here ―sentence‖ is used as a technical term. It is related but

not identical to the sentences of English and other natural languages.) Each sentence is expressed

in a language called a knowledge representation language and represents some assertion about the

world. Sometimes we dignify a sentence with the name axiom, when the sentence is taken as

given without being derived from other sentences.

There must be a way to add new sentences to the knowledge base and a way to query what

is known. The standard names for these operations are TELL and ASK, respectively. Both

operations may involve inference—that is, deriving new sentences from old. Inference must obey

the requirement that when one ASKs a question of the knowledge base, the answer should follow

from what has been told (or TELLed) to the knowledge base previously. Later in this chapter, we

will be more precise about the crucial word ―follow.‖ For now, take it to mean that the inference

process should not make things up as it goes along.

Algorithm shows the outline of a knowledge-based agent program. Like all our agents, it

takes a percept as input and returns an action. The agent maintains a knowledge base, KB, which

may initially contain some background knowledge.

Each time the agent program is called, it does three things. First, it TELLs the knowledge

base what it perceives. Second, it ASKs the knowledge base what action it should perform. In the

process of answering this query, extensive reasoning may be done about the current state of the

world, about the outcomes of possible action sequences, and so on. Third, the agent program

TELLs the knowledge base which action was chosen, and the agent executes the action.

The details of the representation language are hidden inside three functions that implement

the interface between the sensors and actuators on one side and the core representation and

reasoning system on the other. MAKE-PERCEPT-SENTENCE constructs a sentence asserting

that the agent perceived the given percept at the given time. MAKE-ACTION-QUERY constructs

a sentence that asks what action should be done at the current time. Finally, MAKE-ACTION-

SENTENCE constructs a sentence asserting that the chosen action was executed. The details of

the inference mechanisms are hidden inside TELL and ASK. Later sections will reveal these

details.

function KB-AGENT(percept) returns an action

persistent: KB, a knowledge base t, a counter, initially 0, indicating time

TELL(KB, MAKE-PERCEPT-SENTENCE(percept,t))

action ← ASK(KB, MAKE-ACTION-QUERY(t))

TELL(KB, MAKE-ACTION-SENTENCE(action,t))

t ← t + 1

return action

Algorithm 3.1 A generic knowledge-based agent. Given a percept, the agent adds the

percept to its knowledge base, asks the knowledge base for the best action, and tells the

knowledge base that it has in fact taken that action

The agent in algorithm appears quite similar to the agents with internal state. Because of

the definitions of TELL and ASK, however, the knowledge-based agent is not an arbitrary

program for calculating actions. It is amenable to a description at the knowledge level, where we

need specify only what the agent knows and what its goals are, in order to fix its behavior. For

example, an automated taxi might have the goal of taking a passenger from San Francisco to

Marin County and might know that the Golden Gate Bridge is the only link between the two

locations. Then we can expect it to cross the Golden Gate Bridge because it knows that that will

achieve its goal. Notice that this analysis is independent of how the taxi works at the

implementation level. It doesn’t matter whether its geographical knowledge is implemented as

linked lists or pixel maps, or whether it reasons by manipulating strings of symbols stored in

registers or by propagating noisy signals in a network of neurons.

A knowledge-based agent can be built simply by TELLing it what it needs to know.

Starting with an empty knowledge base, the agent designer can TELL sentences one by one until

the agent knows how to operate in its environment. This is called the declarative approach to

system building. In contrast, the procedural approach encodes desired behaviors directly as

program code. In the 1970s and 1980s, advocates of the two approaches engaged in heated

debates. We now understand that a successful agent often combines both declarative and

procedural elements in its design, and that declarative knowledge can often be compiled into more

efficient procedural code.

We can also provide a knowledge-based agent with mechanisms that allow it to learn for

itself. Create general knowledge about the environment from a series of percepts. A learning agent

can be fully autonomous.

THE WUMPUS WORLD

In this section we describe an environment in which knowledge-based agents can show their

worth. The wumpus world is a cave consisting of rooms connected by passageways. Lurking

somewhere in the cave is the terrible wumpus, a beast that eats anyone who enters its room. The

wumpus can be shot by an agent, but the agent has only one arrow. Some rooms contain

bottomless pits that will trap anyone who wanders into these rooms (except for the wumpus,

which is too big to fall in). The only mitigating feature of this bleak environment is the possibility

of finding a heap of gold. Although the wumpus world is rather tame by modern computer game

standards, it illustrates some important points about intelligence. A sample wumpus world is

shown in Figure.

• Performance measure: +1000 for climbing out of the cave with the gold, –1000 for

falling into a pit or being eaten by the wumpus, –1 for each action taken and –10 for using up the

arrow. The game ends either when the agent dies or when the agent climbs out of the cave.

• Environment: A 4 × 4 grid of rooms. The agent always starts in the square labeled [1,1],

facing to the right. The locations of the gold and the wumpus are chosen randomly, with a uniform

distribution, from the squares other than the start square. In addition, each square other than the

start can be a pit, with probability 0.2.

• Actuators: The agent can move Forward, TurnLeft by 90◦, or TurnRight by 90◦. The

agent dies a miserable death if it enters a square containing a pit or a live wumpus. (It is safe,

albeit smelly, to enter a square with a dead wumpus.) If an agent tries to move forward and bumps

into a wall, then the agent does not move. The action Grab can be used to pick up the gold if it is

in the same square as the agent. The action Shoot can be used to fire an arrow in a straight line in

the direction the agent is facing. The arrow continues until it either hits (and hence kills) the

wumpus or hits a wall. The agent has only one arrow, so only the first Shoot action has any effect.

Finally, the action Climb can be used to climb out of the cave, but only from square [1,1].

• Sensors: The agent has five sensors, each of which gives a single bit of information:

 – In the square containing the wumpus and in the directly (not diagonally) adjacent

squares, the agent will perceive a Stench.

– In the squares directly adjacent to a pit, the agent will perceive a Breeze. – In the

square where the gold is, the agent will perceive a Glitter.

 – When an agent walks into a wall, it will perceive a Bump.

– When the wumpus is killed, it emits a woeful Scream that can be perceived anywhere

in the cave.

The percepts will be given to the agent program in the form of a list of five symbols; for

example, if there is a stench and a breeze, but no glitter, bump, or scream, the agent program will

get [Stench, Breeze, None, None, None].

We can characterize the wumpus environment along the various dimensions. Clearly, it is

discrete, static, and single-agent. (The wumpus doesn’t move, fortunately.) It is sequential,

because rewards may come only after many actions are taken. It is partially observable, because

some aspects of the state are not directly perceivable: the agent’s location, the wumpus’s state of

health, and the availability of an arrow. As for the locations of the pits and the wumpus: we could

treat them as unobserved parts of the state that happen to be immutable—in which case, the

transition model for the environment is completely known; or we could say that the transition

model itself is unknown because the agent doesn’t know which Forward actions are fatal—in

which case, discovering the locations of pits and wumpus completes the agent’s knowledge of the

transition model.

Figure3.1 A typical wumpus world. The agent is in the bottom

left corner, facing right.

For an agent in the environment, the main challenge is its initial ignorance of the

configuration of the environment; overcoming this ignorance seems to require logical reasoning.

In most instances of the wumpus world, it is possible for the agent to retrieve the gold safely.

Occasionally, the agent must choose between going home empty-handed and risking death to find

the gold. About 21% of the environments are utterly unfair, because the gold is in a pit or

surrounded by pits.

Let us watch a knowledge-based wumpus agent exploring the environment shown in

Figure 3.1. We use an informal knowledge representation language consisting of writing down

symbols in a grid (as in Figures 3.2 and 3.3).

The agent’s initial knowledge base contains the rules of the environment, as described

previously; in particular, it knows that it is in [1,1] and that [1,1] is a safe square; we denote that

with an ―A‖ and ―OK,‖ respectively, in square [1,1].

The first percept is [None, None, None, None, None], from which the agent can conclude

that its neighbouring squares, [1,2] and [2,1], are free of dangers—they are OK. Figure 3.2(a)

shows the agent’s state of knowledge at this point.

Figure 3.2The first step taken by the agent in the wumpus world.

(a) The initial situation, after percept [None, None, None, None,

None]. (b) After one move, with percept [None, Breeze, None,

None, None].

Figure 3.3Two later stages in the progress of the agent. (a) After

the third move, with percept [Stench, None, None, None, None]. (b)

After the fifth move, with percept [Stench, Breeze, Glitter , None,

None].

A cautious agent will move only into a square that it knows to be OK. Let us suppose the

agent decides to move forward to [2,1]. The agent perceives a breeze (denoted by ―B‖) in [2,1], so

there must be a pit in a neighbouring square. The pit cannot be in [1,1], by the rules of the game,

so there must be a pit in [2,2] or [3,1] or both. The notation ―P?‖ in Figure 3.2(b) indicates a

possible pit in those squares. At this point, there is only one known square that is OK and that has

not yet been visited. So the prudent agent will turn around, go back to [1,1], and then proceed to

[1,2].

The agent perceives a stench in [1,2], resulting in the state of knowledge shown in Figure

7.4(a). The stench in [1,2] means that there must be a wumpus nearby. But thewumpus cannot be

in [1,1], by the rules of the game, and it cannot be in [2,2] (or the agent would have detected a

stench when it was in [2,1]). Therefore, the agent can infer that the wumpus is in [1,3]. The

notation W! indicates this inference. Moreover, the lack of a breeze in [1,2] implies that there is

no pit in [2,2]. Yet the agent has already inferred that there must be a pit in either [2,2] or [3,1], so

this means it must be in [3,1]. This is a fairly difficult inference, because it combines knowledge

gained at different times in different places and relies on the lack of a percept to make one crucial

step.

The agent has now proved to itself that there is neither a pit nor a wumpus in [2,2], so it is

OK to move there. We do not show the agent’s state of knowledge at [2,2]; we just assume that

the agent turns and moves to [2,3], giving us Figure 3.3(b). In [2,3], the agent detects a glitter, so

it should grab the gold and then return home.

Note that in each case for which the agent draws a conclusion from the available

information, that conclusion is guaranteed to be correct if the available information is correct.

This is a fundamental property of logical reasoning.

LOGIC

This section summarizes the fundamental concepts of logical representation and reasoning.

These beautiful ideas are independent of any of logic’s particular forms. It is known that

knowledge bases consist of sentences. These sentences are expressed according to the syntax of

the representation language, which specifies all the sentences that are well formed. The notion of

syntax is clear enough in ordinary arithmetic: ―x + y = 4‖ is a well-formed sentence, whereas

―x4y+ =‖ is not.

A logic must also define the semantics or meaning of sentences. The semantics defines the

truth of each sentence with respect to each possible world. For example, the semantics for

arithmetic specifies that the sentence ―x + y = 4‖ is true in a world where x is 2 and y is 2, but

false in a world where x is 1 and y is 1. In standard logics, every sentence must be either true or

false in each possible world—there is no ―in between.‖

When we need to be precise, we use the term model in place of ―possible world.‖ Whereas

possible worlds might be thought of as (potentially) real environments that the agent might or

might not be in, models are mathematical abstractions, each of which simply fixes the truth or

falsehood of every relevant sentence. Informally, we may think of a possible world as, for

example, having x men and y women sitting at a table playing bridge, and the sentence x + y = 4

is true when there are four people in total. Formally, the possible models are just all possible

assignments of real numbers to the variables x and y. Each such assignment fixes the truth of any

sentence of arithmetic whose variables are x and y. If a sentence α is true in model m, we say that

m satisfies α or sometimes m is a model of α. We use the notation M(α) to mean the set of all

models of α.

Now that we have a notion of truth, we are ready to talk about logical reasoning. This

involves the relation of logical entailment between sentences—the idea that a sentence follows

logically from another sentence. In mathematical notation, we writeto mean that the sentence α

entails the sentence β. The formal definition of entailment is this: α |= β if and only if, in every

model in which α is true, β is also true. Using the notation just introduced, we can write

α |= β if and only if M(α) ⊆ M(β)

The relation of entailment is familiar from arithmetic; we are happy with the idea that the sentence

x = 0 entails the sentence xy = 0. Obviously, in any model where x is zero, it is the case that xy is

zero (regardless of the value of y).

Figure 3.4Possible models for the presence of pits in squares [1,2], [2,2], and

[3,1]. The KB corresponding to the observations of nothing in [1,1] and a

breeze in [2,1] is shown by the solid line. (a) Dotted line shows models of α1

(no pit in [1,2]). (b) Dotted line shows models of α2 (no pit in [2,2]).

We can apply the same kind of analysis to the wumpus-world reasoning exampleConsider

the situation in Figure 3.2(b): the agent has detected nothing in [1,1] and a breeze in [2,1]. These

percepts, combined with the agent’s knowledge of the rules of the wumpus world, constitute the

KB. The agent is interested (among other things) in whether the adjacent squares [1,2], [2,2], and

[3,1] contain pits. Each of the three squares might or might not contain a pit, so (for the purposes

of this example) there are 23 = 8 possible models. These eight models are shown in Figure 3.4.

The KB can be thought of as a set of sentences or as a single sentence that asserts all the

individual sentences. The KB is false in models that contradict what the agent knows— for

example, the KB is false in any model in which [1,2] contains a pit, because there is no breeze in

[1,1]. There are in fact just three models in which the KB is true, and these areshown surrounded

by a solid line in Figure 3.4. Now let us consider two possible conclusions:

α1 = “There is no pit in [1,2].”

α2 = “There is no pit in [2,2].”

We have surrounded the models of α1 and α2 with dotted lines in Figures 73.4(a) and 3.4(b),

respectively. By inspection, we see the following:

in every model in which KB is true, α1 is also true.

Hence, KB |= α1: there is no pit in [1,2]. We can also see that

in some models in which KB is true, α2 is false.

Hence, KB |= α2: the agent cannot conclude that there is no pit in [2,2]. (Nor can it conclude that

there is a pit in [2,2].)

 The preceding example not only illustrates entailment but also shows how the definition

LOGICAL INFERENCE of entailment can be applied to derive conclusions—that is, to carry out

logical inference. MODEL CHECKING The inference algorithm illustrated in Figure 3.4 is called

model checking, because it enumerates all possible models to check that α is true in all models in

which KB is true, that is, that M(KB) ⊆ M(α).

In understanding entailment and inference, it might help to think of the set of all

consequences of KB as a haystack and of α as a needle. Entailment is like the needle being in the

haystack; inference is like finding it. This distinction is embodied in some formal notation: if an

inference algorithm i can derive α from KB, we write

KB I-i α , which is pronounced ―α is derived from KB by i‖ or ―i derives α from KB.‖

An inference algorithm that derives only entailed sentences is called sound or truth

preserving. Soundness is a highly desirable property. An unsound inference procedure essentially

makes things up as it goes along—it announces the discovery of nonexistent needles. It is easy to

see that model checking, when it is applicable,4 is a sound procedure.

The property of completeness is also desirable: an inference algorithm is complete if it can

derive any sentence that is entailed. For real haystacks, which are finite in extent, it seems obvious

that a systematic examination can always decide whether the needle is in the haystack. For many

knowledge bases, however, the haystack of consequences is infinite, and completeness becomes

an important issue. Fortunately, there are complete inference procedures for logics that are

sufficiently expressive to handle many knowledge bases.

We have described a reasoning process whose conclusions are guaranteed to be true in any

world in which the premises are true; in particular, if KB is true in the real world, then any

sentence α derived from KB by a sound inference procedure is also true in the real world. So,

while an inference process operates on ―syntax‖—internal physical configurations such as bits in

registers or patterns of electrical blips in brains—the process corresponds to the real-world

relationship whereby some aspect of the real world is the case6 by virtue of other aspects of the

real world being the case. This correspondence between world and representation is illustrated in

Figure 3.5.

Figure 3.5 Sentences are physical configurations of the agent, and reasoning is a

process of constructing new physical configurations from old ones. Logical

reasoning should ensure that the new configurations represent aspects of the world

that actually follow from the aspects that the old configurations represent.

The final issue to consider is grounding—the connection between logical reasoning

processes and the real environment in which the agent exists. In particular, how do we know that

KB is true in the real world? (After all, KB is just ―syntax‖ inside the agent’s head.) This is a

philosophical question about which many, many books have been written. A simple answer is that

the agent’s sensors create the connection. For example, our wumpus-world agent has a smell

sensor. The agent program creates a suitable sentence whenever there is a smell. Then, whenever

that sentence is in the knowledge base, it is true in the real world. Thus, the meaning and truth of

percept sentences are defined by the processes of sensing and sentence construction that produce

them. What about the rest of the agent’s knowledge, such as its belief that wumpuses cause smells

in adjacent squares? This is not a direct representation of a single percept, but a general rule—

derived, perhaps, from perceptual experience but not identical to a statement of that experience.

General rules like this are produced by a sentence construction process called learning, which is

the subject of Part V. Learning is fallible. It could be the case that wumpuses cause smells except

on February 29 in leap years, which is when they take their baths. Thus, KB may not be true in

the real world, but with good learning procedures, there is reason for optimism.

PROPOSOTIONAL LOGIC

We now present a simple but powerful logic called propositional logic. We cover the

syntax of propositional logic and its semantics—the way in which the truth of sentences is

determined. Then we look at entailment—the relation between a sentence and another sentence

that follows from it—and see how this leads to a simple algorithm for logical inference.

Everything takes place, of course, in the wumpus world.

Syntax

The syntax of propositional logic defines the allowable sentences. The atomic sentences

consist of a single proposition symbol. Each such symbol stands for a proposition that can be true

or false. We use symbols that start with an uppercase letter and may contain other letters or

subscripts, for example: P, Q, R, W1,3 and North. The names are arbitrary but are often chosen to

have some mnemonic value—we use W1,3 to stand for the proposition that the wumpus is in

[1,3]. (Remember that symbols such as W1,3 are atomic, i.e., W, 1, and 3 are not meaningful parts

of the symbol.) There are two proposition symbols with fixed meanings: True is the always-true

proposition and False is the always-false proposition. Complex sentences are constructed from

simpler sentences, using parentheses and logical connectives. There are five connectives in

common use:

¬ (not). A sentence such as ¬W1,3 is called the negation of W1,3. A literal is either an

atomic sentence (a positive literal) or a negated atomic sentence (a negative literal).

∧ (and). A sentence whose main connective is ∧, such as W1,3 ∧ P3,1, is called a con

junction; its parts are the conjuncts. (The ∧ looks like an ―A‖ for ―And.‖)

∨ (or). A sentence using ∨, such as (W1,3∧P3,1)∨W2,2, is a disjunction of the disjuncts

(W1,3 ∧ P3,1) and W2,2. (Historically, the ∨ comes from the Latin ―vel,‖ which means

―or.‖ For most people, it is easier to remember ∨ as an upside-down ∧.)

⇒ (implies). A sentence such as (W1,3∧P3,1) ⇒ ¬W2,2 is called an implication (or

conditional). Its premise or antecedent is (W1,3 ∧P3,1), and its conclusion or consequent

is ¬W2,2. Implications are also known as rules or if–then statements. The implication

RULES symbol is sometimes written in other books as ⊃ or →.

⇔ (if and only if). The sentence W1,3 ⇔ ¬W2,2 is a biconditional. Some other books

write this as ≡.

Figure 3.6 A BNF (Backus–Naur Form) grammar of sentences in propositional

logic, along with operator precedences, from highest to lowest.

Figure 3.6 gives a formal grammar of propositional logic; see page 1060 if you are not familiar

with the BNF notation. The BNF grammar by itself is ambiguous; a sentence with several

operators can be parsed by the grammar in multiple ways. To eliminate the ambiguity we define a

precedence for each operator. The ―not‖ operator (¬) has the highest precedence, which means that

in the sentence ¬A ∧ B the ¬ binds most tightly, giving us the equivalent of (¬A)∧B rather than

¬(A∧B). (The notation for ordinary arithmetic is the same: −2+4 is 2, not –6.) When in doubt, use

parentheses to make sure of the right interpretation. Square brackets mean the same thing as

parentheses; the choice of square brackets or parentheses is solely to make it easier for a human to

read a sentence.

Semantics

 Having specified the syntax of propositional logic, we now specify its semantics. The

semantics defines the rules for determining the truth of a sentence with respect to a particular

model. In propositional logic, a model simply fixes the truth value—true or false—for every

proposition symbol. For example, if the sentences in the knowledge base make use of the

proposition symbols P1,2, P2,2, and P3,1, then one possible model is

m1 = {P1,2 = false, P2,2 = false, P3,1 = true} .

With three proposition symbols, there are 23 = 8 possible models—exactly those depicted in

Figure 7.5. Notice, however, that the models are purely mathematical objects with no necessary

connection to wumpus worlds. P1,2 is just a symbol; it might mean ―there is a pit in [1,2]‖ or ―I’m

in Paris today and tomorrow.‖

 The semantics for propositional logic must specify how to compute the truth value of any

sentence, given a model. This is done recursively. All sentences are constructed from atomic

sentences and the five connectives; therefore, we need to specify how to compute the truth of

atomic sentences and how to compute the truth of sentences formed with each of the five

connectives. Atomic sentences are easy:

• True is true in every model and False is false in every model.

• The truth value of every other proposition symbol must be specified directly in the model. For

example, in the model m1 given earlier, P1,2 is false.

For complex sentences, we have five rules, which hold for any subsentences P and Q in any model

m (here ―iff‖ means ―if and only if‖):

• ¬P is true iff P is false in m.

• P ∧ Q is true iff both P and Q are true in m.

• P ∨ Q is true iff either P or Q is true in m.

• P ⇒ Q is true unless P is true and Q is false in m.

• P ⇔ Q is true iff P and Q are both true or both false in m.

The rules can also be expressed with truth tables that specify the truth value of a complex sentence

for each possible assignment of truth values to its components. Truth tables for the five

connectives are given in Figure 7.8. From these tables, the truth value of any sentence s can be

computed with respect to any model m by a simple recursive evaluation. For example, the

sentence ¬P1,2 ∧ (P2,2 ∨ P3,1), evaluated in m1, gives true ∧ (false ∨ true) = true ∧ true = true.

 The truth tables for ―and,‖ ―or,‖ and ―not‖ are in close accord with our intuitions about the

English words. The main point of possible confusion is that P ∨ Q is true when P is true or Q is

true or both. A different connective, called ―exclusive or‖ (―xor‖ for short), yields false when both

disjuncts are true.7 There is no consensus on the symbol for exclusive or; some choices are ∨˙ or =

or ⊕.

 The truth table for ⇒ may not quite fit one’s intuitive understanding of ―P implies Q‖ or ―if

P then Q.‖ For one thing, propositional logic does not require any relation of causation or

relevance between P and Q. The sentence ―5 is odd implies Tokyo is the capital of Japan‖ is a true

sentence of propositional logic (under the normal interpretation), even though it is a decidedly odd

sentence of English. Another point of confusion is that any implication is true whenever its

antecedent is false. For example, ―5 is even implies Sam is smart‖ is true, regardless of whether

Sam is smart. This seems bizarre, but it makes sense if you think of ―P ⇒ Q‖ as saying, ―If P is

true, then I am claiming that Q is true. Otherwise I am making no claim.‖ The only way for this

sentence to be false is if P is true but Q is false.

The biconditional, P ⇔ Q, is true whenever both P ⇒ Q and Q ⇒ P are true. In English,

this is often written as ―P if and only if Q.‖ Many of the rules of the wumpus world are best

written using ⇔. For example, a square is breezy if a neighboring square has a pit, and a square is

breezy only if a neighboring square has a pit. So we need a biconditional,

B1,1 ⇔ (P1,2 ∨ P2,1) ,

where B1,1 means that there is a breeze in [1,1].

Figure 3.7 Truth tables for the five logical connectives. To use the table to compute, for

example, the value of P ∨ Q when P is true and Q is false, first look on the left for the row

where P is true and Q is false (the third row). Then look in that row under the P ∨Q column

to see the result: true.

A Simple Knowledge Base

 Now that we have defined the semantics for propositional logic, we can construct a

knowledge base for the wumpus world. We focus first on the immutable aspects of the wumpus

world, leaving the mutable aspects for a later section. For now, we need the following symbols for

each [x, y] location:

Px,y is true if there is a pit in [x, y].

Wx,y is true if there is a wumpus in [x, y], dead or alive.

Bx,y is true if the agent perceives a breeze in [x, y].

Sx,y is true if the agent perceives a stench in [x, y].

The sentences we write will suffice to derive ¬P1,2 (there is no pit in [1,2]) We label each

sentence Ri so that we can refer to them:

• There is no pit in [1,1]:

R1 : ¬P1,1 .

• A square is breezy if and only if there is a pit in a neighboring square. This has to be

stated for each square; for now, we include just the relevant squares:

R2 : B1,1 ⇔ (P1,2 ∨ P2,1) .

R3 : B2,1 ⇔ (P1,1 ∨ P2,2 ∨ P3,1) .

R4 : ¬B1,1 . R5 : B2,1 .

A Simple Inference Procedure

 Our goal now is to decide whether KB |= α for some sentence α. For example, is ¬P1,2

entailed by our KB? Our first algorithm for inference is a model-checking approach that is a direct

implementation of the definition of entailment: enumerate the models, and check that α is true in

every model in which KB is true. Models are assignments of true or false to every proposition

symbol. Returning to our wumpus-world example, the relevant proposition symbols are B1,1,

B2,1, P1,1, P1,2, P2,1, P2,2, and P3,1. With seven symbols, there are 27 = 128 possible models; in

three of these, KB is true (Figure 3.8). In those three models, ¬P1,2 is true, hence there is no pit in

[1,2]. On the other hand, P2,2 is true in two of the three models and false in one, so we cannot yet

tell whether there is a pit in [2,2].

Figure 3.8 A truth table constructed for the knowledge base given in the text.

KB is true if R1 through R5 are true, which occurs in just 3 of the 128 rows (the

ones underlined in the right-hand column). In all 3 rows, P1,2 is false, so there is

no pit in [1,2]. On the other hand, there might (or might not) be a pit in [2,2].

Figure 3.9 A truth-table enumeration algorithm for deciding propositional

entailment. (TT stands for truth table.) PL-TRUE? returns true if a sentence

holds within a model. The variable model represents a partial model—an

assignment to some of the symbols. The keyword ―and‖ is used here as a

logical operation on its two arguments, returning true or false.

Figure 3.10 Standard logical equivalences. The symbols α, β, and γ stand for arbitrary

sentences of propositional logic.

PROPOSITIONAL THEOREM PROVING

 So far, we have shown how to determine entailment by model checking: enumerating

models and showing that the sentence must hold in all models. In this section, we show how

entailment can be done by theorem proving—applying rules of inference directly to the sentences

in our knowledge base to construct a proof of the desired sentence without consulting models. If

the number of models is large but the length of the proof is short, then theorem proving can be

more efficient than model checking.

 Before we plunge into the details of theorem-proving algorithms, we will need some

additional concepts related to entailment. The first concept is logical equivalence: two sentences α

and β are logically equivalent if they are true in the same set of models. We write this as α ≡ β.

For example, we can easily show (using truth tables) that P ∧ Q and Q ∧ P are logically

equivalent; other equivalences are shown in Figure 3.10. These equivalences play much the same

role in logic as arithmetic identities do in ordinary mathematics. An alternative definition of

equivalence is as follows: any two sentences α and β are equivalent only if each of them entails

the other:

 α ≡ β if and only if α |= β and β |= α .

The second concept we will need is validity. A sentence is valid if it is true in all models. For

example, the sentence P ∨ ¬P is valid. Valid sentences are also known as tautologies—they are

necessarily true. Because the sentence True is true in all models, every valid sentence is logically

equivalent to True. What good are valid sentences? From our definition of entailment, we can

derive the deduction theorem, which was known to the ancient Greeks:

 For any sentences α and β, α |= β if and only if the sentence (α ⇒ β) is valid.

Hence, we can decide if α |= β by checking that (α ⇒ β) is true in every model—which is

essentially what the inference algorithm in Figure 3.9 does or by proving that (α ⇒ β) is

equivalent to True. Conversely, the deduction theorem states that every valid implication sentence

describes a legitimate inference. The final concept we will need is satisfiability. A sentence is

satisfiable if it is true in, or satisfied by, some model. For example, the knowledge base given

earlier, (R1 ∧ R2 ∧ R3 ∧ R4 ∧ R5), is satisfiable because there are three models in which it is true,

as shown in Figure 3.8. Satisfiability can be checked by enumerating the possible models until one

is found that satisfies the sentence. The problem of determining the satisfiability of sentences in

propositional logic—the SAT problem—was the first problem proved to be NP-complete. Many

problems in computer science are really satisfiability problems. For example, all the constraint

satisfaction problems in Chapter 6 ask whether the constraints are satisfiable by some assignment.

 Validity and satisfiability are of course connected: α is valid iff ¬α is unsatisfiable;

contrapositively, α is satisfiable iff ¬α is not valid. We also have the following useful result: α |= β

if and only if the sentence (α ∧ ¬β) is unsatisfiable. Proving β from α by checking the

unsatisfiability of (α ∧ ¬β) corresponds exactly to the standard mathematical proof technique of

reductio ad absurdum (literally, ―reduction to an absurd thing‖). It is also called proof by

refutation or proof by contradiction. One assumes a sentence β to be false and shows that this

leads to a contradiction with known axioms α. This contradiction is exactly what is meant by

saying that the sentence (α ∧ ¬β) is unsatisfiable.

Inference and Proofs

 This section covers inference rules that can be applied to derive a proof—a chain of

conclusions that leads to the desired goal. The best-known rule is called Modus Ponens (Latin for

mode that affirms) and is written

 α ⇒ β, α /β .

The notation means that, whenever any sentences of the form α ⇒ β and α are given, then the

sentence β can be inferred. For example, if (WumpusAhead ∧WumpusAlive) ⇒ Shoot and

(WumpusAhead ∧ WumpusAlive) are given, then Shoot can be inferred

 Another useful inference rule is And-Elimination, which says that, from a conjunction, any

of the conjuncts can be inferred: α ∧ β /α . For example, from (WumpusAhead ∧ WumpusAlive),

WumpusAlive can be inferred. By considering the possible truth values of α and β, one can show

easily that Modus Ponens and And-Elimination are sound once and for all. These rules can then be

used in any particular instances where they apply, generating sound inferences without the need

for enumerating models. All of the logical equivalences in Figure 3.10 can be used as inference

rules. For example, the equivalence for biconditional elimination yields the two inference rules

 α ⇔ β /(α ⇒ β) ∧ (β ⇒ α) and (α ⇒ β) ∧ (β ⇒ α) /α ⇔ β

Not all inference rules work in both directions like this. For example, we cannot run Modus

Ponens in the opposite direction to obtain α ⇒ β and α from β.

 Let us see how these inference rules and equivalences can be used in the wumpus world.

We start with the knowledge base containing R1 through R5 and show how to prove ¬P1,2, that

is, there is no pit in [1,2]. First, we apply biconditional elimination to R2 to obtain

 R6 : (B1,1 ⇒ (P1,2 ∨ P2,1)) ∧ ((P1,2 ∨ P2,1) ⇒ B1,1) .

Then we apply And-Elimination to R6 to obtain

 R7 : ((P1,2 ∨ P2,1) ⇒ B1,1) .

Logical equivalence for contrapositives gives

 R8 : (¬B1,1 ⇒ ¬(P1,2 ∨ P2,1)) .

Now we can apply Modus Ponens with R8 and the percept R4 (i.e., ¬B1,1), to obtain

 R9 : ¬(P1,2 ∨ P2,1) .

Finally, we apply De Morgan’s rule, giving the conclusion

 R10 : ¬P1,2 ∧ ¬P2,1 . That is, neither [1,2] nor [2,1] contains a pit.

 We found this proof by hand, but we can apply any of the search algorithms in Chapter 3

to find a sequence of steps that constitutes a proof. We just need to define a proof problem as

follows:

• INITIAL STATE: the initial knowledge base.

• ACTIONS: the set of actions consists of all the inference rules applied to all the sentences that

match the top half of the inference rule.

• RESULT: the result of an action is to add the sentence in the bottom half of the inference rule.

• GOAL: the goal is a state that contains the sentence we are trying to prove.

 Thus, searching for proofs is an alternative to enumerating models. In many practical cases

finding a proof can be more efficient because the proof can ignore irrelevant propositions, no

matter how many of them there are. For example, the proof given earlier leading to ¬P1,2 ∧ ¬P2,1

does not mention the propositions B2,1, P1,1, P2,2, or P3,1. They can be ignored because the goal

proposition, P1,2, appears only in sentence R2; the other propositions in R2 appear only in R4 and

R2; so R1, R3, and R5 have no bearing on the proof. The same would hold even if we added a

million more sentences to the knowledge base; the simple truth-table algorithm, on the other hand,

would be overwhelmed by the exponential explosion of models.

 One final property of logical systems is monotonicity, which says that the set of entailed

sentences can only increase as information is added to the knowledge base. For any sentences α

and β,

 if KB |= α then KB ∧ β |= α .

For example, suppose the knowledge base contains the additional assertion β stating that there are

exactly eight pits in the world. This knowledge might help the agent draw additional conclusions,

but it cannot invalidate any conclusion α already inferred—such as the conclusion that there is no

pit in [1,2]. Monotonicity means that inference rules can be applied whenever suitable premises

are found in the knowledge base—the conclusion of the rule must follow regardless of what else

is in the knowledge base.

Proof by Resolution

 We have argued that the inference rules covered so far are sound, but we have not

discussed the question of completeness for the inference algorithms that use them. Search

algorithms such as iterative deepening search (page 89) are complete in the sense that they will

find any reachable goal, but if the available inference rules are inadequate, then the goal is not

reachable—no proof exists that uses only those inference rules. For example, if we removed the

biconditional elimination rule, the proof in the preceding section would not go through. The

current section introduces a single inference rule, resolution, that yields a complete inference

algorithm when coupled with any complete search algorithm.

 We begin by using a simple version of the resolution rule in the wumpus world. Let us

consider the steps leading up to Figure 3.3(a): the agent returns from [2,1] to [1,1] and then goes

to [1,2], where it perceives a stench, but no breeze. We add the following facts to the knowledge

base:

 R11 : ¬B1,2 .

 R12 : B1,2 ⇔ (P1,1 ∨ P2,2 ∨ P1,3) .

By the same process that led to R10 earlier, we can now derive the absence of pits in [2,2] and

[1,3] (remember that [1,1] is already known to be pitless):

 R13 : ¬P2,2 .

 R14 : ¬P1,3 .

We can also apply biconditional elimination to R3, followed by Modus Ponens with R5, to obtain

the fact that there is a pit in [1,1], [2,2], or [3,1]:

 R15 : P1,1 ∨ P2,2 ∨ P3,1 .

Now comes the first application of the resolution rule: the literal ¬P2,2 in R13 resolves with the

literal P2,2 in R15 to give the resolvent

 R16 : P1,1 ∨ P3,1 . In English; if there’s a pit in one of [1,1], [2,2], and [3,1] and it’s not in

[2,2], then it’s in [1,1] or [3,1]. Similarly, the literal ¬P1,1 in R1 resolves with the literal P1,1 in

R16 to give

 R17 : P3,1 .

In English: if there’s a pit in [1,1] or [3,1] and it’s not in [1,1], then it’s in [3,1]. These last two

inference steps are examples of the unit resolution inference rule,

 1 ∨···∨ lk, m /l1 ∨···∨ li−1 ∨ li+1 ∨···∨ lk ,

where each l is a literal and i and m are complementary literals (i.e.,

one is the negation of the other). Thus, the unit resolution rule takes a clause—a disjunction of

literals—and a literal and produces a new clause. Note that a single literal can be viewed as a

disjunction of one literal, also known as a unit clause.

 The unit resolution rule can be generalized to the full resolution rule,

 l1 ∨···∨ lk, m1 ∨···∨ mn / l1 ∨···∨ li−1 ∨ li+1 ∨···∨ lk ∨ m1 ∨···∨ mj−1 ∨ mj+1 ∨···∨ mn

,

where li and mj are complementary literals. This says that resolution takes two clauses and

produces a new clause containing all the literals of the two original clauses except the two

complementary literals. For example, we have

 P1,1 ∨ P3,1, ¬P1,1 ∨ ¬P2,2 / P3,1 ∨ ¬P2,2 .

 There is one more technical aspect of the resolution rule: the resulting clause should

contain only one copy of each literal. The removal of multiple copies of literals is called factoring.

For example, if we resolve (A ∨ B) with (A ∨ ¬B), we obtain (A ∨ A), which is reduced to just A.

 The soundness of the resolution rule can be seen easily by considering the literal li that is

complementary to literal mj in the other clause. If li is true, then mj is false, and hence m1 ∨···∨

mj−1 ∨ mj+1 ∨···∨ mn must be true, because m1 ∨···∨ mn is given. If li is false, then l1 ∨···∨

li−1 ∨ li+1 ∨···∨ lk must be true because l1 ∨···∨ lk is given. Now li is either true or false, so one

or other of these conclusions holds—exactly as the resolution rule states.

 What is more surprising about the resolution rule is that it forms the basis for a family of

complete inference procedures. A resolution-based theorem prover can, for any sentences α and β

in propositional logic, decide whether α |= β. The next two subsections explain how resolution

accomplishes this.

Conjunctive Normal Form

The resolution rule applies only to clauses (that is, disjunctions of literals), so it would seem to be

relevant only to knowledge bases and queries consisting of clauses. How, then, can it lead to a

complete inference procedure for all of propositional logic? The answer is that every sentence of

propositional logic is logically equivalent to a conjunction of clauses. A sentence expressed as a

conjunction of clauses is said to be in conjunctive normal form or CNF (see Figure 3.13). We now

describe a procedure for converting to CNF. We illustrate the procedure by converting the

sentence B1,1 ⇔ (P1,2 ∨ P2,1) into CNF. The steps are as follows:

1. Eliminate ⇔, replacing α ⇔ β with (α ⇒ β) ∧ (β ⇒ α).

 (B1,1 ⇒ (P1,2 ∨ P2,1)) ∧ ((P1,2 ∨ P2,1) ⇒ B1,1) .

2. Eliminate ⇒, replacing α ⇒ β with ¬α ∨ β:

 (¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬(P1,2 ∨ P2,1) ∨ B1,1) .

3. CNF requires ¬ to appear only in literals, so we ―move ¬ inwards‖ by repeated

application of the following equivalences:

 ¬(¬α) ≡ α (double-negation elimination)

 ¬(α ∧ β) ≡ (¬α ∨ ¬β) (De Morgan)

 ¬(α ∨ β) ≡ (¬α ∧ ¬β) (De Morgan)

In the example, we require just one application of the last rule:

 (¬B1,1 ∨ P1,2 ∨ P2,1) ∧ ((¬P1,2 ∧ ¬P2,1) ∨ B1,1) .

4. Now we have a sentence containing nested ∧ and ∨ operators applied to literals. We

apply the distributivity law, distributing ∨ over ∧ wherever possible.

 (¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬P1,2 ∨ B1,1) ∧ (¬P2,1 ∨ B1,1) .

The original sentence is now in CNF, as a conjunction of three clauses. It is much harder to read,

but it can be used as input to a resolution procedure.

A Resolution Algorithm

 Inference procedures based on resolution work by using the principle of proof by

contradiction introduced on page 250. That is, to show that KB |= α, we show that (KB ∧ ¬α) is

unsatisfiable. We do this by proving a contradiction.

 In resolution algorithm, First (KB ∧ ¬α) is converted into CNF. Then, the resolution rule is

applied to the resulting clauses. Each pair that contains complementary literals is resolved to

produce a new clause, which is added to the set if it is not already present. The process continues

until one of two things happens:

 • there are no new clauses that can be added, in which case KB does not entail α; or,

 • two clauses resolve to yield the empty clause, in which case KB entails α.

 The empty clause—a disjunction of no disjuncts—is equivalent to False because a

disjunction is true only if at least one of its disjuncts is true. Another way to see that an empty

clause represents a contradiction is to observe that it arises only from resolving two

complementary unit clauses such as P and ¬P.

 We can apply the resolution procedure to a very simple inference in the wumpus world.

When the agent is in [1,1], there is no breeze, so there can be no pits in neighboring squares. The

relevant knowledge base is

 KB = R2 ∧ R4 = (B1,1 ⇔ (P1,2 ∨ P2,1)) ∧ ¬B1,1

and we wish to prove α which is, say, ¬P1,2. When we convert (KB ∧ ¬α) into CNF, we obtain

the clauses shown at the top of Figure 3.12. The second row of the figure shows clauses obtained

by resolving pairs in the first row. Then, when P1,2 is resolved with ¬P1,2, we obtain the empty

clause, shown as a small square. Inspection of Figure 3.12 reveals that many resolution steps are

pointless. For example, the clause B1,1 ∨¬B1,1∨P1,2 is equivalent to True ∨ P1,2 which is

equivalent to True. Deducing that True is true is not very helpful. Therefore, any clause in which

two complementary literals appear can be discarded.

 Figure 3.11 A simple resolution algorithm for propositional logic. The

function PL-RESOLVE returns the set of all possible clauses obtained by

resolving its two inputs.

Figure 3.12 Partial application of PL-RESOLUTION to a simple inference in

the wumpus world. ¬P1,2 is shown to follow from the first four clauses in the

top row. Partial application of PL-RESOLUTION to a simple inference in the

wumpus world. ¬P1,2 is shown to follow from the first four clauses in the top

row.

Completeness of resolution

 To conclude our discussion of resolution, we now show why PL-RESOLUTION is

complete. To do this, we introduce the resolution closure RC (S) of a set of clauses S, which is the

set of all clauses derivable by repeated application of the resolution rule to clauses in S or their

derivatives. The resolution closure is what PL-RESOLUTION computes as the final value of the

variable clauses. It is easy to see that RC (S) must be finite, because there are only finitely many

distinct clauses that can be constructed out of the symbols P1,...,Pk that appear in S. (Notice that

this would not be true without the factoring step that removes multiple copies of literals.) Hence,

PL-RESOLUTION always terminates.

 The completeness theorem for resolution in propositional logic is called the ground

resolution theorem:

If a set of clauses is unsatisfiable, then the resolution closure of those clauses contains the

empty clause.

This theorem is proved by demonstrating its contrapositive: if the closure RC(S) does not contain

the empty clause, then S is satisfiable. In fact, we can construct a model for S with suitable truth

values for P1,...,Pk. The construction procedure is as follows:

For i from 1 to k,

– If a clause in RC(S) contains the literal ¬Pi and all its other literals are false

under the assignment chosen for P1,...,Pi−1, then assign false to Pi.

– Otherwise, assign true to Pi.

This assignment to P1,...,Pk is a model of S. To see this, assume the opposite—that, at some stage

i in the sequence, assigning symbol Pi causes some clause C to become false. For this to happen, it

must be the case that all the other literals in C must already have been falsified by assignments to

P1,...,Pi−1. Thus, C must now look like either (false ∨ false ∨ ··· false∨Pi) or like (false∨false∨···

false∨¬Pi). If just one of these two is in RC(S), then the algorithm will assign the appropriate truth

value to Pi to make C true, so C can only be falsified if both of these clauses are in RC(S). Now,

since RC(S) is closed under resolution, it will contain the resolvent of these two clauses, and that

resolvent will have all of its literals already falsified by the assignments to P1,...,Pi−1. This

contradicts our assumption that the first falsified clause appears at stage i. Hence, we have proved

that the construction never falsifies a clause in RC(S); that is, it produces a model of RC(S) and

thus a model of S itself (since S is contained in RC(S)).

Horn Clauses & Definite Clauses

 The completeness of resolution makes it a very important inference method. In many

practical situations, however, the full power of resolution is not needed. Some real-world

knowledge bases satisfy certain restrictions on the form of sentences they contain, which enables

them to use a more restricted and efficient inference algorithm.

One such restricted form is the definite clause, which is a disjunction of literals of which

exactly one is positive. For example, the clause (¬L1,1 ∨ ¬Breeze ∨ B1,1) is a definite clause,

whereas (¬B1,1 ∨ P1,2 ∨ P2,1) is not.

Slightly more general is the Horn clause, which is a disjunction of literals of which at most

one is positive. So all definite clauses are Horn clauses, as are clauses with no positive literals;

these are called goal clauses. Horn clauses are closed under resolution: if you resolve two Horn

clauses, you get back a Horn clause.

Knowledge bases containing only definite clauses are interesting for three reasons:

1. Every definite clause can be written as an implication whose premise is a

conjunction of positive literals and whose conclusion is a single positive literal.

For example, the definite clause (¬L1,1 ∨ ¬Breeze ∨ B1,1) can be written as the

implication (L1,1 ∧ Breeze) ⇒ B1,1. In the implication form, the sentence is

easier to understand: it says that if the agent is in [1,1] and there is a breeze, then

[1,1] is breezy. BODY In Horn form, the premise is called the body and the

conclusion is called the head. A HEAD sentence consisting of a single positive

literal, such as L1,1, is called a fact. It too can FACT be written in implication

form as True ⇒ L1,1, but it is simpler to write just L1,1.

2. Inference with Horn clauses can be done through the forward-chaining and

backwardchaining algorithms, which we explain next. Both of these algorithms

are natural, BACKWARDCHAINING in that the inference steps are obvious

and easy for humans to follow.

3. Deciding entailment with Horn clauses can be done in time that is linear in the

size of the knowledge base—a pleasant surprise.

Figure 3.13 A grammar for conjunctive normal form, Horn clauses, and definite

clauses. A clause such as A ∧ B ⇒ C is still a definite clause when it is written as ¬A

∨ ¬B ∨ C, but only the former is considered the canonical form for definite clauses.

One more class is the k-CNF sentence, which is a CNF sentence where each clause has

at most k literals.

Forward and Backward Chaining

 The forward-chaining algorithm PL-FC-ENTAILS?(KB, q) determines if a single

proposition symbol q—the query—is entailed by a knowledge base of definite clauses. It

begins from known facts (positive literals) in the knowledge base. If all the premises of an

implication are known, then its conclusion is added to the set of known facts. For example,

if L1,1 and Breeze are known and (L1,1 ∧ Breeze) ⇒ B1,1 is in the knowledge base, then

B1,1 can be added. This process continues until the query q is added or until no further

inferences can be made. The detailed algorithm is shown in Figure 3.14; the main point to

remember is that it runs in linear time.

 The best way to understand the algorithm is through an example and a picture. Figure

3.15(a) shows a simple knowledge base of Horn clauses with A and B as known facts.

Figure 3.15(b) shows the same knowledge base drawn as an AND–OR graph (see Chapter

4). In AND–OR graphs, multiple links joined by an arc indicate a conjunction—every link

must be proved—while multiple links without an arc indicate a disjunction—any link can be

proved. It is easy to see how forward chaining works in the graph. The known leaves (here,

A and B) are set, and inference propagates up the graph as far as possible. Wherever a

conjunction appears, the propagation waits until all the conjuncts are known before

proceeding. The reader is encouraged to work through the example in detail.

Figure 3.14 The forward-chaining algorithm for propositional logic

 It is easy to see that forward chaining is sound: every inference is essentially an application

of Modus Ponens. Forward chaining is also complete: every entailed atomic sentence will be

derived. The easiest way to see this is to consider the final state of the inferred table (after the

algorithm reaches a fixed point where no new inferences are possible). The table contains true for

each symbol inferred during the process, and false for all other symbols. We can view the table as

a logical model; moreover, every definite clause in the original KB is true in this model. To see

this, assume the opposite, namely that some clause a1∧...∧ak ⇒ b is false in the model. Then a1 ∧

... ∧ ak must be true in the model and b must be false in the model. But this contradicts our

assumption that the algorithm has reached a fixed point! We can conclude, therefore, that the set

of atomic sentences inferred at the fixed point defines a model of the original KB. Furthermore,

any atomic sentence q that is entailed by the KB must be true in all its models and in this model in

particular. Hence, every entailed atomic sentence q must be inferred by the algorithm.

 Forward chaining is an example of the general concept of data-driven reasoning—that is,

reasoning in which the focus of attention starts with the known data. It can be used within an

agent to derive conclusions from incoming percepts, often without a specific query in mind. For

example, the wumpus agent might TELL its percepts to the knowledge base using an incremental

forward-chaining algorithm in which new facts can be added to the agenda to initiate new

inferences. In humans, a certain amount of data-driven reasoning occurs as new information

arrives. For example, if I am indoors and hear rain starting to fall, it might occur to me that the

picnic will be cancelled. Yet it will probably not occur to me that the seventeenth petal on the

largest rose in my neighbor’s garden will get wet; humans keep forward chaining under careful

control, lest they be swamped with irrelevant consequences.

The backward-chaining algorithm, as its name suggests, works backward from the query.

If the query q is known to be true, then no work is needed. Otherwise, the algorithm finds those

implications in the knowledge base whose conclusion is q. If all the premises of one of those

implications can be proved true (by backward chaining), then q is true. When applied to the query

Q in Figure 3.15, it works back down the graph until it reaches a set of known facts, A and B, that

forms the basis for a proof. As with forward chaining, an efficient implementation runs in linear

time.

Backward chaining is a form of goal-directed reasoning. It is useful for answering specific

questions such as ―What shall I do now?‖ and ―Where are my keys?‖ Often, the cost of backward

chaining is much less than linear in the size of the knowledge base, because the process touches

only relevant facts.

Figure 3.15 (a) A set of Horn clauses. (b) The corresponding AND–OR graph

EFFECTIVE PROPOSITIONAL MODEL CHECKING

In this section, we describe two families of efficient algorithms for general propositional

inference based on model checking: One approach based on backtracking search, and one on local

hill-climbing search. These algorithms are part of the ―technology‖ of propositional logic.

The algorithms we describe are for checking satisfiability: the SAT problem. (As noted

earlier, testing entailment, α |= β, can be done by testing unsatisfiability of α ∧ ¬β.) We have

already noted the connection between finding a satisfying model for a logical sentence and finding

a solution for a constraint satisfaction problem, so it is perhaps not surprising that the two families

of algorithms closely resemble the backtracking algorithms of Section 6.3 and the local search

algorithms of Section 6.4. They are, however, extremely important in their own right because so

many combinatorial problems in computer science can be reduced to checking the satisfiability of

a propositional sentence. Any improvement in satisfiability algorithms has huge consequences for

our ability to handle complexity in general.

A complete backtracking algorithm

 The first algorithm we consider is often called the Davis–Putnam algorithm, after the

seminal paper by Martin Davis and Hilary Putnam (1960). The algorithm is in fact the version

described by Davis, Logemann, and Loveland (1962), so we will call it DPLL after the initials of

all four authors. DPLL takes as input a sentence in conjunctive normal form—a set of clauses.

Like BACKTRACKING-SEARCH and TT-ENTAILS?, it is essentially a recursive, depth-first

enumeration of possible models. It embodies three improvements over the simple scheme of TT-

ENTAILS?:

 • Early termination: The algorithm detects whether the sentence must be true or false, even

with a partially completed model. A clause is true if any literal is true, even if the other literals do

not yet have truth values; hence, the sentence as a whole could be judged true even before the

model is complete. For example, the sentence (A ∨ B) ∧ (A ∨ C) is true if A is true, regardless of

the values of B and C. Similarly, a sentence is false if any clause is false, which occurs when each

of its literals is false. Again, this can occur long before the model is complete. Early termination

avoids examination of entire subtrees in the search space.

• Pure symbol heuristic: A pure symbol is a symbol that always appears with the same

―sign‖ in all clauses. For example, in the three clauses (A ∨ ¬B), (¬B ∨ ¬C), and (C ∨ A), the

symbol A is pure because only the positive literal appears, B is pure because only the negative

literal appears, and C is impure. It is easy to see that if a sentence has a model, then it has a model

with the pure symbols assigned so as to make their literals true, because doing so can never make

a clause false. Note that, in determining the purity of a symbol, the algorithm can ignore clauses

that are already known to be true in the model constructed so far. For example, if the model

contains B = false, then the clause (¬B ∨ ¬C) is already true, and in the remaining clauses C

appears only as a positive literal; therefore C becomes pure.

• Unit clause heuristic: A unit clause was defined earlier as a clause with just one literal. In

the context of DPLL, it also means clauses in which all literals but one are already assigned false

by the model. For example, if the model contains B = true, then (¬B ∨ ¬C) simplifies to ¬C,

which is a unit clause. Obviously, for this clause to be true, C must be set to false. The unit clause

heuristic assigns all such symbols before branching on the remainder. One important consequence

of the heuristic is that any attempt to prove (by refutation) a literal that is already in the

knowledge base will succeed immediately (Exercise 7.23). Notice also that assigning one unit

clause can create another unit clause—for example, when C is set to false, (C ∨ A) becomes a unit

clause, causing true to be assigned to A. This ―cascade‖ of forced assignments is called unit

propagation. It resembles the process of forward chaining with definite clauses, and indeed, if the

CNF expression contains only definite clauses then DPLL essentially replicates forward chaining.

UNIT IV: First-Order Logic: Representation, Syntax and Semantics of First-Order Logic, Uses

of First-Order Logic, Knowledge Engineering in First-Order Logic.

 Inference in First-Order Logic: Propositional vs. First-Order Inference, Unification and Lifting,

Forward Chaining, Backward Chaining, Resolution.

First order Logic

 Propositional logic is a declarative language because its semantics is based on a truth relation

between sentences and possible worlds. It also has sufficient expressive power to deal with

partial information, using disjunction and negation.

First-Order Logic is a logic which is sufficiently expressive to represent a good deal of our

common sense knowledge.

• It is also either includes or forms the foundation of many other representation languages.

• It is also called as First-Order Predicate calculus.

• It is abbreviated as FOL or FOPC

FOL adopts the foundation of propositional logic with all its advantages to build a more

expressive logic on that foundation, borrowing representational ideas from natural language

while avoiding its drawbacks.

The Syntax of natural language contains elements such as,

1. Nouns and noun phrases that refer to objects (Squares, pits, rumpuses)

2. Verbs and verb phrases that refer to among objects (is breezy, is adjacent to)

Some of these relations are functions-relations in which there is only one “Value” for a given

“input”. Whereas propositional logic assumes the world contains facts, first-order logic (like

natural language) assumes the world contains Objects: people, houses, numbers, colors, baseball

games, wars, …

Relations: red, round, prime, brother of, bigger than, part of, comes between,… Functions: father

of, best friend, one more than, plus,…….

UNIT V: Knowledge Representation: Ontological Engineering, Categories and Objects, Events, Mental Objects and

Model Logic, Reasoning Systems for Categories, Reasoning with Default Information. Quantifying Uncertainty:

Acting under Uncertainty, Basic Probability Notation, and Inference Using Full Joint Distributions, Independence,

Bayes’ Rule and Its Use.

KNOWLEDGE REPRESENTATION ONTOLOGICAL ENGINEERING

Concepts such as Events, Time, Physical Objects, and Beliefs— that occur in many different domains. Representing

these abstract concepts is sometimes called ontological engineering.

The general framework of concepts is called an upper ontology because of the convention of drawing graphs with

the general concepts at the top and the more specific concepts below them, as in Figure .

Categories and Objects

The organization of objects into categories is a vital part of knowledge representation. Although interaction with

the world takes place at the level of individual objects, much reasoning takes place at the level of categories. For

example, a shopper would normally have the goal of buying a basketball, rather than a particular basketball such as

BB9 There are two choices for representing categories in first-order logic: predicates and objects. That is, we can

use the predicate Basketball (b), or we can reify1 the category as an object, Basketballs.

We could then say Member(b, Basketballs), which we will abbreviate as b∈ Basketballs, to say that b is a member

of the category of basketballs. We say Subset(Basketballs, Balls), abbreviated as Basketballs ⊂ Balls, to say that

Basketballs is a subcategory of Balls. Categories serve to organize and simplify the knowledge base through

inheritance. If we say that all instances of the category Food are edible, and if we assert that Fruit is a subclass of

Food and Apples is a subclass of Fruit, then we can infer that every apple is edible. We say that the individual

apples inherit the property of edibility, in this case from their membership in the Food category. First-order logic

makes it easy to state facts about categories, either by relating objects to categories or by quantifying over their

members. Here are some types of facts, with examples of each:

• An object is a member of a category.

