
















































Machine Learning in Practice 

Data preprocessing, Model selection, Evaluation, Deployment, Ethics of machine learning 

 

Data preprocessing 

Data preprocessing is a crucial step in the machine learning pipeline that involves cleaning, 

organizing, and transforming raw data into a format suitable for training and evaluating machine 

learning models. The goal is to enhance the quality of the data, address potential issues, and 

prepare it for effective model training. Here are key aspects of data preprocessing in the context 

of machine learning projects: 

1. Handling Missing Data: 

 Identify and handle missing values in the dataset. This may involve imputing 

missing values using statistical measures (mean, median, mode) or advanced 

techniques such as interpolation. 

2. Dealing with Outliers: 

 Detect and address outliers that could significantly impact model performance. 

This may involve removing outliers or transforming them to bring them within an 

acceptable range. 

3. Data Cleaning: 

 Clean the dataset by addressing inconsistencies, errors, or discrepancies. This 

includes fixing typos, standardizing formats, and ensuring data consistency. 

4. Feature Scaling: 

 Normalize or scale features to ensure that all features contribute equally to model 

training. Common methods include Min-Max scaling or standardization (Z-score 

normalization). 

5. Encoding Categorical Variables: 

 Convert categorical variables into a format suitable for machine learning 

algorithms. This often involves one-hot encoding, where categorical variables are 

transformed into binary vectors. 

6. Handling Imbalanced Data: 

 Address class imbalances in classification tasks to prevent models from being 

biased towards the majority class. Techniques include oversampling, 

undersampling, or using specialized algorithms for imbalanced data. 

7. Feature Engineering: 

 Create new features or transform existing ones to capture more relevant 

information for the model. Feature engineering can improve a model's ability to 

understand complex relationships within the data. 

8. Data Splitting: 

 Split the dataset into training, validation, and test sets. The training set is used to 

train the model, the validation set helps tune hyperparameters, and the test set 

evaluates the model's performance on unseen data. 

9. Handling Time-Series Data: 

 For time-series data, handle temporal aspects such as time gaps, missing values, 

and seasonality. This may involve resampling, lag features, or other time-specific 

preprocessing steps. 



10. Documentation and Logging: 
 Document all steps taken during data preprocessing and maintain a record of 

transformations applied. Logging helps in reproducing results, debugging, and 
ensuring transparency in the machine learning pipeline. 

 
Model Selection in Machine Learning Projects 
 
Model Selection in Machine Learning Projects: Picking the Right Tool for the Job 
Choosing the right model for your ML project is like picking the perfect tool for a DIY project. 
You wouldn't use a screwdriver for hammering, and you wouldn't use a chainsaw for trimming 
nails! Similarly, in the vast toolbox of ML algorithms, selecting the best one for your specific 
problem is crucial for success. Let's break down the practical side of model selection: 
Why is it important? 
Imagine throwing every tool you own at a problem! It's probably going to be messy and 
inefficient. Likewise, using the wrong model in your project can lead to: 

 Poor performance: Inaccurate predictions, weak generalizability, and wasted resources. 
 Overfitting: Memorizing the training data but failing on unseen examples. 
 Underfitting: Failing to capture the underlying patterns in the data. 

Factors to Consider: 
 Problem type: Regression, classification, clustering, etc. Each requires different types of 

models. 
 Data characteristics: Size, dimensionality, complexity, distribution. Some models work 

better with specific data types. 
 Project constraints: Training time, computational resources, model 

interpretability. Different models have different demands. 
 Business needs: Accuracy, explainability, real-time predictions. Prioritize metrics 

relevant to your goals. 
Common Model Selection Techniques: 

 Hold-out validation: Split your data into training and testing sets, train models on the 
training set, and evaluate them on the unseen testing set. 

 K-fold cross-validation: Randomly split your data into k folds, train models on k-1 
folds, and test on the remaining fold, repeat for all k folds, and average the results. 

 Grid search and hyperparameter tuning: Explore different combinations of model 
parameters (hyperparameters) to find the optimal configuration for your data. 

 Model comparison metrics: Accuracy, precision, recall, F1-score, AUC-ROC. Choose 
metrics that align with your project goals. 

 
 
 
 
 
 
 
 
 
 



Real-world Example: 
Building a model to predict house prices. You might consider: 

 Regression models: Linear regression, decision trees, or gradient boosting for continuous 
price prediction. 

 Feature engineering: Create features like "distance to amenities" or "average price in the 
neighborhood". 

 Model comparison: Use k-fold cross-validation to compare performance of different 
models on the same data. 

 Choose the model: Select the one with the best average score on the chosen metric 
(e.g., mean squared error) while considering additional factors like interpretability for 
explaining price variations. 

Tips for Effective Selection: 
 Start simple: Don't jump into complex models too quickly. Consider baseline models for 

initial comparisons. 
 Iterate and refine: Keep trying different models, hyper parameters, and feature 

engineering techniques. 
 Understand the trade-offs: No model is perfect. Balance accuracy with factors like 

training time, interpretability, and resource constraints. 
 Visualize your results: Use plots and charts to understand model behavior and compare 

performance. 
Remember, model selection is an art, not a science. There's no one-size-fits-all solution. By 
carefully considering your specific project context and applying these practical tips, you can 
choose the right tool for the job and build successful ML models that deliver real value. 
 
Model evaluation 
Model evaluation is a critical aspect of machine learning projects that involves assessing the 
performance and generalization ability of a trained model. It helps determine how well the model 
is likely to perform on new, unseen data. Here are key considerations and techniques for model 
evaluation in the context of machine learning projects: 

1. Metrics Selection: 
 Choose appropriate evaluation metrics based on the nature of the problem. 

Common metrics include accuracy, precision, recall, F1 score for classification 
tasks, and mean squared error, R-squared for regression tasks. The choice of 
metric depends on the project goals and the specific characteristics of the data. 

2. Confusion Matrix: 
 For classification problems, construct a confusion matrix to visualize the model's 

performance in terms of true positives, true negatives, false positives, and false 
negatives. This aids in understanding the types of errors the model makes. 

3. Cross-Validation: 
 Implement cross-validation techniques, such as k-fold cross-validation or leave-

one-out cross-validation, to robustly assess model performance. This helps 
mitigate the impact of variability in the training and test datasets. 

4. Learning Curves: 
 Analyze learning curves to understand how the model's performance changes with 

respect to the amount of training data. This helps identify issues like overfitting or 
underfitting. 



5. ROC Curve and AUC-ROC: 
 For binary classification problems, plot Receiver Operating Characteristic (ROC) 

curves and calculate the Area Under the Curve (AUC-ROC). This provides 
insights into the trade-off between sensitivity and specificity. 

6. Precision-Recall Curve: 
 For imbalanced classification problems, examine precision-recall curves, which 

illustrate the precision-recall trade-off at different decision thresholds. 
7. Feature Importance: 

 Assess the importance of features in the model to understand which features 
contribute most to the predictions. This can be done using techniques such as 
permutation importance or feature importance plots. 

8. Model Comparison: 
 Compare the performance of multiple models to select the best-performing one. 

This can involve statistical tests or visualizations to highlight differences in 
performance. 

9. Bias and Fairness Evaluation: 
 Evaluate the model for bias and fairness, especially in sensitive applications. 

Analyze the model's behavior across different demographic groups to ensure 
equitable outcomes. 

10. Deployment Considerations: 
 Consider the practical implications of deploying the model, including the 

potential impact on end-users and the broader environment. Evaluate the model's 
robustness to changes in the input data distribution. 

Model deployment 
Model deployment in the context of machine learning projects refers to the process of taking a 
trained machine learning model and integrating it into a production environment where it can be 
used to make predictions on new, unseen data. It involves several steps to ensure that the model 
functions effectively, reliably, and securely in real-world applications. Here's an overview of the 
key considerations in model deployment: 

1. Model Serialization: 
 Serialize the trained model to a format that can be easily loaded and utilized by 

the deployment environment. Common serialization formats include pickle, 
joblib, or formats compatible with specific deployment frameworks. 

2. Scalability: 
 Ensure that the deployed model can scale to handle varying workloads and data 

volumes. This may involve using scalable infrastructure, containerization (e.g., 
Docker), or cloud-based solutions. 

3. API Development: 
 Create an API (Application Programming Interface) to expose the model's 

functionality, allowing other software applications to interact with and make 
predictions using the model. RESTful APIs are commonly used for this purpose. 

4. Input Validation: 
 Implement robust input validation to ensure that the incoming data meets the 

model's expectations. This includes checking data types, ranges, and handling 
missing values appropriately. 
 



5. Security Measures: 
 Implement security measures to protect the deployed model from potential 

vulnerabilities. This may involve encryption of data in transit, access controls, and 
regular security audits. 

6. Monitoring and Logging: 
 Set up monitoring systems to track the model's performance in real-time. Logging 

should capture relevant information, including input data, predictions, and any 
issues that may arise during deployment. 

7. Versioning: 
 Establish version control for the deployed models to track changes and updates. 

This ensures that different versions of the model can be easily managed, rolled 
back, or upgraded without disrupting the system. 

8. Model A/B Testing: 
 Implement A/B testing methodologies to evaluate the performance of different 

model versions in a live environment. This allows for data-driven decisions 
regarding model improvements or changes. 

9. Downtime Mitigation: 
 Plan for and mitigate downtime during updates or maintenance. This may involve 

deploying redundant instances, load balancing, or using strategies like canary 
releases to minimize service interruptions. 

10. Documentation: 
 Create comprehensive documentation for the deployed model, including 

information on the API, input requirements, output format, and any specific 
considerations for users or developers interacting with the model. 

Model deployment is a critical phase that bridges the gap between the development of machine 
learning models and their practical application in real-world scenarios. Effective deployment 
ensures that the benefits of the trained model are realized in production while maintaining 
performance, reliability, and security. It requires collaboration between data scientists, software 
engineers, and DevOps teams to create a seamless and efficient deployment pipeline. 
 
Ethics in machine learning 
Ethics in machine learning refers to the responsible and fair development, deployment, and use 
of machine learning models and algorithms. In the context of machine learning projects, 
addressing ethical considerations is crucial to ensure that the technology benefits society without 
causing harm or reinforcing biases. Here are key aspects of ethics in machine learning projects: 

1. Fairness and Bias: 
 Assess and mitigate biases in the training data and model predictions. Pay 

attention to potential disparities across different demographic groups to avoid 
reinforcing or exacerbating existing societal biases. 

2. Transparency: 
 Strive for transparency in model development and decision-making processes. 

Clearly communicate how models work, the data used, and the potential impact of 
model predictions. Transparent models enhance trust and accountability. 

3. Accountability: 
 Establish accountability for the impact of machine learning models. Clearly 

define roles and responsibilities, and hold individuals and organizations 



accountable for the ethical implications of their models. 
4. Data Privacy: 

 Prioritize data privacy by implementing measures to protect sensitive information. 
Comply with data protection regulations, and consider anonymization or 
encryption techniques to safeguard user privacy. 

5. Informed Consent: 
 Obtain informed consent from individuals whose data is used for training models. 

Clearly communicate the purposes of data collection and how the data will be 
used, giving users the option to opt in or opt out. 

6. Robustness and Reliability: 
 Ensure that machine learning models are robust and reliable across different 

contexts. Consider potential adversarial attacks and implement measures to 
enhance model robustness in real-world scenarios. 

7. Interpretability: 
 Design models that are interpretable and understandable by humans. 

Interpretability aids in understanding model decisions, allowing stakeholders to 
identify and rectify potential biases or ethical concerns. 

8. Continual Monitoring: 
 Implement ongoing monitoring of deployed models to identify and address ethical 

issues that may arise as the model interacts with new data in a live environment. 
9. Stakeholder Engagement: 

 Involve diverse stakeholders, including affected communities, in the decision-
making process. Gather input from individuals who may be impacted by the use 
of machine learning models to ensure a more comprehensive understanding of 
potential ethical implications. 

10. Societal Impact Assessment: 
 Conduct a societal impact assessment to anticipate and evaluate the broader 

consequences of deploying machine learning models. This includes considering 
potential economic, social, and environmental impacts. 

Ethics in machine learning is an evolving field, and it requires a proactive and collaborative 
effort from data scientists, developers, policymakers, and other stakeholders. By incorporating 
ethical considerations into the entire machine learning lifecycle, practitioners can help build and 
deploy models that contribute positively to society while minimizing risks and negative 
consequences. Regularly reassessing ethical practices and staying informed about evolving 
ethical guidelines is essential in the rapidly changing landscape of machine learning technology. 
 



                  UNIT–II 

 

Regression: Introduction to Regression analysis, measure of linear relationship, Regression 

with stats models, Determining coefficient, meaning and significance of coefficients, coefficient 

calculation with least square method, Types of regression, Simple linear regression, Using 

simple features, Polynomial Regression, Metrics for Regression: MSE, RMSE, MAE. 

Introduction to Regression analysis: 

Regression Analysis is a statistical process for estimating the relationships between the 

dependent variables or criterion variables and one or more independent variables or 

predictors. Regression analysis explains the changes in criteria in relation to changes in select 

predictors. The conditional expectation of the criteria is based on predictors where the 

average value of the dependent variables is given when the independent variables are 

changed. Three major uses for regression analysis are determining the strength of predictors, 

forecasting an effect, and trend forecasting. 

Measure of linear Relationship: 
1. Linear regression is used for predictive analysis. Linear regression is a linear 

approach for modelling the relationship between the criterion or the scalar response 
and the multiple predictors or explanatory variables. Linear regression focuses on the 
conditional probability distribution of the response given the values of the predictors. 
For linear regression, there is a danger of overfitting. The formula for linear regression 
is: Y’ = bX + A. 

2. Polynomial regression is used for curvilinear data. Polynomial regression is fit with the 
method of least squares. The goal of regression analysis is to model the expected value of a 
dependent variable y in regards to the independent variable x. The equation for polynomial 
regression is: 

 

3. Stepwise regression is used for fitting regression models with predictive models. It is 
carried out automatically. With each step, the variable is added or subtracted from the set of 
explanatory variables. The approaches for stepwise regression are forward selection, 
backward elimination, and bidirectional elimination. 

 
 . 

 
4. Ridge regression is a technique for analyzing multiple regression data. When 

multicollinearity occurs, least squares estimates are unbiased. A degree of bias is added to 
the regression estimates, and as a result, ridge regression reduces the standard errors. The 
formula for ridge 

 

 

 
. 

Lasso regression is a regression analysis method that performs both variable selection and 
regularization. Lasso regression uses soft thresholding. Lasso regression selects only a 
subset of the provide 



     covariates for use in the final model. Lasso regression is  
 

             
. 
5. ElasticNet regression is a regularized regression method that linearly 

combines the penalties of the lasso and ridge methods. ElasticNet regression is 
used for support vector machines, metric learning, and portfolio optimization. 

The penalty function is given by   
 

Regression with stats models: 

Linear models with independently and identically distributed errors, and for errors 

with heteroscedasticity or autocorrelation. This module allows estimation by ordinary 

least squares (OLS), weighted least squares (WLS), generalized least squares (GLS), 

and feasible generalized least squares with autocorrelated AR(p) errors. 

Ordinary Least Square (OLS) Method 

for Linear Regression 

This post is about the ordinary least square method (OLS) for simple 

linear regression. If you are new to linear regression, read this article 

for getting a clear idea about the implementation of simple linear 

regression. This post will help you to understand how simple linear 

regression works step-by-step. 

The simple linear regression is a model with a single regressor 

(independent variable) x that has a relationship with a response 

(dependent or target) y that is a 

y = β0 + β1 x + ε — — — — — — — — — — (1) 

Where β0: intercept 



β1: slope (unknown constant) 

ε: random error component 

This is a line where y is the dependent variable we want to predict, x 

is the independent variable, and β0 and β1 are the coefficients that 

we need to estimate. 

Estimation of β0 and β1 : 

The OLS method is used to estimate β0 and β1. The OLS method 

seeks to minimize the sum of the squared residuals. This means 

from the given data we calculate the distance from each data point to 

the regression line, square it, and the sum of all of the squared 

errors together. 

 

From equation (1) we may write 



yi = β0 + β1 x + εi, i = 1, 2, …..n — — — — — — — — — (2) 

The equation (2) is a sample regression model, written in terms of 

the n pairs of data (yi, xi) (i = 1, 2,……..,n). Thus, the least-squares 

criteria are 

 



 



 



 
Ordinary Least Square Method 

 

Let’s take a simple example. This table shows some data from the 

manufacturing company. Each row in the table shows the sales for a 

year and the amount spent on advertising that year. Here our target 

variable is sales-which we want to predict. 



Linear Regression estimates that Sales = β0 + β1 * (Advertising) 

Estimating the Slope ( β1): 

1. Calculate the mean value of x and y 

 

2. Calculate the error of each variable from the mean 

 

3. Multiply the error for each x with the error for each y and 

calculate the sum of these multiplications 



 

4. Square the residual of each x value from the mean and sum of 

these squared values 

 

Now we have all the values to calculate the slope (β1) = 

221014.5833/8698.694 = 25.41 

Estimating the Intercept ( β0): 

β0 = mean(y)-(β1*mean(x)) 

we already know all the values to calculate β0. 

β0 = 968.5-(37.83333333*25.41)=7.239 



Making Predictions: 

Now, we have the coefficients for our simple linear regression. 

y = 7.239 + 25.41* x 

Let’s make predictions for our data. 

 

Estimating Error: Calculate the error for our predictions (Root 

Mean Squared Error or RMSE) 

 
Root Mean Squared Error 

 



From the calculated RMSE we can say that each prediction is on 

average wrong by about 39.2059 units. 

 
Weighted Least Squares: 

The method of ordinary least squares assumes that there is constant variance in the 

errors (which is called homoscedasticity). The method of weighted least squares can be 

used when the ordinary least squares assumption of constant variance in the errors is 

violated (which is called heteroscedasticity). The model under consideration is 

Y=Xβ+ϵ∗, 

where ϵ∗ is assumed to be (multivariate) normally distributed with mean 
vector 0 and nonconstant variance-covariance matrix 

(σ120…00σ22…0⋮⋮⋱⋮00…σn2) 

If we define the reciprocal of each variance, σi2, as the weight, wi=1/σi2, 
then let matrix W be a diagonal matrix containing these weights: 

W=(w10…00w2…0⋮⋮⋱⋮00…wn) 

The weighted least squares estimate is then 

β^WLS=arg⁡minβ∑i=1nϵi∗2=(XTWX)−1XTWY 

With this setting, we can make a few observations: 

 Since each weight is inversely proportional to the error variance, it 

reflects the information in that observation. So, an observation with small 

error variance has a large weight since it contains relatively more 

information than an observation with large error variance (small weight). 

 The weights have to be known (or more usually estimated) up to a 

proportionality constant. 

To illustrate, consider the famous 1877 Galton data set, consisting of 7 

measurements each of X = Parent (pea diameter in inches of parent plant) 

and Y = Progeny (average pea diameter in inches of up to 10 plants grown from 

seeds of the parent plant). Also included in the dataset are standard deviations, 

SD, of the offspring peas grown from each parent. These standard deviations 

reflect the information in the response Y values (remember these are averages) 

and so in estimating a regression model we should downweight the obervations 

with a large standard deviation and upweight the observations with a small 



standard deviation. In other words we should use weighted least squares with 

weights equal to 1/SD2. The resulting fitted equation from Minitab for this 

model is: 

Progeny = 0.12796 + 0.2048 Parent 

Compare this with the fitted equation for the ordinary least squares model: 

Progeny = 0.12703 + 0.2100 Parent 

The equations aren't very different but we can gain some intuition into the 

effects of using weighted least squares by looking at a scatterplot of the data 

with the two regression lines superimposed: 

 

The black line represents the OLS fit, while the red line represents the WLS fit. 

The standard deviations tend to increase as the value of Parent increases, so the 

weights tend to decrease as the value of Parent increases. Thus, on the left of the 

graph where the observations are upweighted the red fitted line is pulled slightly 

closer to the data points, whereas on the right of the graph where the 

observations are downweighted the red fitted line is slightly further from the 

data points. 

For this example the weights were known. There are other circumstances where 

the weights are known: 



 If the i-th response is an average of ni equally variable observations, 

then Var(yi) = σ2/ni and wi = ni. 

 If the i-th response is a total of ni observations, 

then Var(yi) = niσ2 and wi =1/ ni. 

 If variance is proportional to some predictor xi, 

then Var(yi) = xiσ2 and wi =1/ xi. 

In practice, for other types of dataset, the structure of W is usually unknown, so 

we have to perform an ordinary least squares (OLS) regression first. Provided 

the regression function is appropriate, the i-th squared residual from the OLS fit 

is an estimate of σi2 and the i-th absolute residual is an estimate of σi (which 

tends to be a more useful estimator in the presence of outliers). The residuals 

are much too variable to be used directly in estimating the weights, wi, so 

instead we use either the squared residuals to estimate a variance function or the 

absolute residuals to estimate a standard deviation function. We then use this 

variance or standard deviation function to estimate the weights. 

 

Some possible variance and standard deviation function estimates include: 

 If a residual plot against a predictor exhibits a megaphone shape, then 

regress the absolute values of the residuals against that predictor. The 

resulting fitted values of this regression are estimates of σi. (And 

remember wi=1/σi2). 

 If a residual plot against the fitted values exhibits a megaphone shape, 

then regress the absolute values of the residuals against the fitted values. 

The resulting fitted values of this regression are estimates of σi. 

 If a residual plot of the squared residuals against a predictor exhibits an 

upward trend, then regress the squared residuals against that predictor. 

The resulting fitted values of this regression are estimates of σi2. 

 If a residual plot of the squared residuals against the fitted values exhibits 

an upward trend, then regress the squared residuals against the fitted 

values. The resulting fitted values of this regression are estimates of σi2. 

After using one of these methods to estimate the weights, wi, we then use these 

weights in estimating a weighted least squares regression model. We consider 

some examples of this approach in the next section. 

 

Some key points regarding weighted least squares are: 

1. The difficulty, in practice, is determining estimates of the error variances 

(or standard deviations). 



2. Weighted least squares estimates of the coefficients will usually be nearly 

the same as the "ordinary" unweighted estimates. In cases where they 

differ substantially, the procedure can be iterated until estimated 

coefficients stabilize (often in no more than one or two iterations); this is 

called iteratively reweighted least squares. 

3. In some cases, the values of the weights may be based on theory or prior 

research. 

4. In designed experiments with large numbers of replicates, weights can be 

estimated directly from sample variances of the response variable at each 

combination of predictor variables. 

5. Use of weights will (legitimately) impact the widths of statistical 

intervals. 

Generalized least squares: 

The generalized least squares (GLS) estimator of the coefficients of a linear regression is a 

generalization of the ordinary least squares (OLS) estimator. It is used to deal with situations 

in which the OLS estimator is not BLUE (best linear unbiased estimator) because one of the 

main assumptions of the Gauss-Markov theorem, namely that of homoskedasticity and 

absence of serial correlation, is violated. In such situations, provided that the other 

assumptions of the Gauss-Markov theorem are satisfied, the GLS estimator is BLUE. 

 

Setting 

The linear regression is where: 

  is an  vector of outputs (  is the sample size); 

  is an  matrix of regressors (  is the number of regressors); 

  is the  vector of regression coefficients to be estimated; 

  is an  vector of error terms. 

We assume that: 

1.  has full rank; 

2. ; 

3. , where  is a  symmetric positive definite matrix. 

These assumptions are the same made in the Gauss-Markov theorem in order to prove that 

OLS is BLUE, except for assumption 3. 



In the Gauss-Markov theorem, we make the more restrictive assumption that

where  is the  identity matrix. The latter assumption means that the 

errors of the regression are homoskedastic (they all have the same variance) and uncorrelated 

(their covariances are all equal to zero). 

Instead, we now allow for heteroskedasticity (the errors can have different variances) and 

correlation (the covariances between errors can be different from zero). 

The GLS estimator 

Since  is symmetric and positive definite, there is an invertible matrix  such that

 

If we pre-multiply the regression equation by , we obtain  

Define so that the transformed regression equation can be written as

 

The following proposition holds. 

Proposition The OLS estimator of the coefficients of the transformed regression equation, 

called generalized least squares estimator, is

Furthermore,  is BLUE (best linear unbiased). 

Proof 

The generalized least squares problem 

Remember that the OLS estimator  of a linear regression solves the problem

that is, it minimizes the sum of squared residuals. 

The GLS estimator can be shown to solve the problem

which is called generalized least squares problem. 

Proof 



The function to be minimized can be written as  

It is also a sum of squared residuals, but the original residuals  are rescaled 

by  before being squared and summed. 

Weighted least squares 

When the covariance matrix  is diagonal (i.e., the error terms are uncorrelated), the GLS 

estimator is called weighted least squares estimator (WLS). In this case the function to be 

minimized becomes where  is the -th entry 

of ,  is the -th row of , and  is the -th diagonal element of . Thus, we are 

minimizing a weighted sum of the squared residuals, in which each squared residual is 

weighted by the reciprocal of its variance. In other words, while estimating , we are giving 

less weight to the observations for which the linear relationship to be estimated is more noisy, 

and more weight to those for which it is less noisy. 

Feasible generalized least squares 

Note that we need to know the covariance matrix  in order to actually compute . In 

practice, we seldom know  and we replace it with an estimate . The estimator thus 

obtained, that is, is called feasible generalized least 

squares estimator. 

There is no general method for estimating , although the residuals of a fist-step OLS 

regression are typically used to compute . How the problem is approached depends on the 

specific application and on additional assumptions that may be made about the process 

generating the errors of the regression. 

Example A typical situation in which  is estimated by running a first-step OLS regression 

is when the observations are indexed by time. For example, we could assume that  is 

diagonal and estimate its diagonal elements with an exponential moving average

where  



Determining coefficient, meaning and significance of coefficients: 

Regression Coefficients: 

Regression coefficients are the quantities by which the variables in a regression equation are 

multiplied. The most commonly used type of regression is linear regression. The aim of linear 

regression is to find the regression coefficients that produce the best-fitted line. 

The regression coefficients in linear regression help in predicting the value of an unknown 

variable using a known variable. In this article, we will learn more about regression 

coefficients, their formulas as well as see certain associated examples so as to find the best-

fitted regression line. 

What are Regression Coefficients: 

Regression coefficients can be defined as estimates of some unknown parameters to describe 

the relationship between a predictor variable and the corresponding response. In other words, 

regression coefficients are used to predict the value of an unknown variable using a known 

variable. Linear regression is used to quantify how a unit change in an independent variable 

causes an effect in the dependent variable by determining the equation of the best-

fitted straight line. This process is known as regression analysis. 

Formula for Regression Coefficients: 

The goal of linear regression is to find the equation of the straight line that best describes the 

relationship between two or more variables. For example, suppose a simple regression 

equation is given by y = 7x - 3, then 7 is the coefficient, x is the predictor and -3 is the 

constant term. Suppose the equation of the best-fitted line is given by Y = aX + b then, the 

regression coefficients formula is given as follows: 

a = n(∑xy)−(∑x)(∑y)n(∑x2)−(∑x)2n(∑xy)−(∑x)(∑y)n(∑x2)−(∑x)2 

b = (∑y)(∑x2)−(∑x)(∑xy)n(∑x2)−(∑x)2(∑y)(∑x2)−(∑x)(∑xy)n(∑x2)−(∑x)2 

here, n refers to the number of data points in the given data sets. 

How to Find Regression Coefficients: 

Before determining the regression coefficients to find the best-fitted line, it is necessary to 

check whether the variables follow a linear relationship or not. This can be done by using 

the correlation coefficient and interpreting the corresponding value. Given below are the 

steps to find the regression coefficients for regression analysis. 

 To find the coefficient of X use the formula a 

= n(∑xy)−(∑x)(∑y)n(∑x2)−(∑x)2n(∑xy)−(∑x)(∑y)n(∑x2)−(∑x)2. 

 To find the constant term the formula is b 

= (∑y)(∑x2)−(∑x)(∑xy)n(∑x2)−(∑x)2(∑y)(∑x2)−(∑x)(∑xy)n(∑x2)−(∑x)2. 

 Now input the regression coefficients in the equation Y = aX + b. 



 A scatter plot can also be made so as to visually depict the regression line as shown below. 

 

Regression Coefficients Interpretation: 

It is necessary to understand the nature of the regression coefficient as this helps to make 

certain predictions about the unknown variable. It helps to check to what extent a dependent 

variable will change with a unit change in the independent variable. Given below are the 

regression coefficients interpretation. 

 If the sign of the coefficients is positive it implies that there is a direct relationship between the 

variables. This means that if the independent variable increases (or decreases) then the dependent 

variable also increases (or decreases). 

 If the sign of the coefficients is negative it means that if the independent variable increases then 

the dependent variable decreases and vice versa. This means it is an indirect relationship. 

Important Notes on Regression Coefficients 

 Regression coefficients are values that are used in a regression equation to estimate the predictor 

variable and its response. 



 The most commonly used type of regression is linear regression. The equation of the best-fitted 

line is given by Y = aX + b. 

 By using formulas, the values of the regression coefficient can be determined so as to get the 

regression line for the given variables. 

  

 

 

Examples on Regression Coefficients 

 Example 1: Find the regression coefficients for the following data: 

Age Glucose Level 

43 99 

21 65 

25 79 

42 75 

57 87 

59 81 

 Solution: 

Age (x) Glucose Level (y) xy x2 y2 

43 99 4257 1849 9801 

21 65 1365 441 4225 



Age (x) Glucose Level (y) xy x2 y2 

25 79 1975 625 6241 

42 75 3150 1764 5625 

57 87 4959 3249 7569 

59 81 4779 3481 6561 

Total = 247 486 20485 11409 40022 

 The formula for finding the regression coefficients are as follows: 

 a = n(∑xy)−(∑x)(∑y)n(∑x2)−(∑x)2n(∑xy)−(∑x)(∑y)n(∑x2)−(∑x)2 

 = 0.39 

 b = (∑y)(∑x2)−(∑x)(∑xy)n(∑x2)−(∑x)2(∑y)(∑x2)−(∑x)(∑xy)n(∑x2)−(∑x)2 

 = 65.14 

 The regression equation is Y = 0.39X + 65.14 

 Answer: a = 0.39 and b = 65.14 

 Example 2: Find the regression line for the following data. 

A B 

6.25 4.03 

6.5 4.02 

6.5 4.02 

6 4.04 

6.25 4.03 



A B 

6.25 4.03 

 Solution: 

X Y XY X2 Y2 

6.25 4.03 25.19 39.06 16.24 

6.5 4.02 26.13 42.25 16.16 

6.5 4.02 26.13 42.25 16.16 

6 4.04 24.24 36 16.32 

6.25 4.03 25.19 39.06 16.24 

6.25 4.03 25.19 39.06 16.24 

Total = 37.75 24.17 152.06 237.69 97.37 

 The formula for finding the regression coefficients are as follows: 

 a = n(∑xy)−(∑x)(∑y)n(∑x2)−(∑x)2n(∑xy)−(∑x)(∑y)n(∑x2)−(∑x)2 

 = -0.04 

 b = (∑y)(∑x2)−(∑x)(∑xy)n(∑x2)−(∑x)2(∑y)(∑x2)−(∑x)(∑xy)n(∑x2)−(∑x)2 

 = 4.28 

 The regression equation is Y = -0.04X + 4.28 

 Answer: Regression equation is Y = -0.04X + 4.28 

 Example 3: Plot the graph for the following data if the regression coefficients are given 

as a = -0.07 and b = 68.63 

X Y 



X Y 

130 55 

135 56 

140 62 

142 63 

147 63 

156 51 

 Solution: The regression coefficients are given as a = -0.07 and b = 68.63 

 Thus, the regression line is Y = -0.07X + 68.63 



  

 least square method : 
The least square method is the process of finding the best-fitting curve or line of best fit for a 
set of data points by reducing the sum of the squares of the offsets (residual part) of the points 
from the curve. During the process of finding the relation between two variables, the trend of 
outcomes are estimated quantitatively. This process is termed as regression analysis. The 
method of curve fitting is an approach to regression analysis. This method of fitting equations 
which approximates the curves to given raw data is the least squares. 

It is quite obvious that the fitting of curves for a particular data set are not always unique. Thus, it 
is required to find a curve having a minimal deviation from all the measured data points. This is 
known as the best-fitting curve and is found by using the least-squares method. 

Least Square Method Definition: 

The least-squares method is a crucial statistical method that is practised to find a regression line 
or a best-fit line for the given pattern. This method is described by an equation with specific 
parameters. The method of least squares is generously used in evaluation and regression. In 
regression analysis, this method is said to be a standard approach for the approximation of sets 
of equations having more equations than the number of unknowns. 

The method of least squares actually defines the solution for the minimization of the sum of 
squares of deviations or the errors in the result of each equation. Find the formula for sum of 
squares of errors, which help to find the variation in observed data. 



The least-squares method is often applied in data fitting. The best fit result is assumed to reduce 
the sum of squared errors or residuals which are stated to be the differences between the 
observed or experimental value and corresponding fitted value given in the model. 

There are two basic categories of least-squares problems: 

 Ordinary or linear least squares 

 Nonlinear least squares 

These depend upon linearity or nonlinearity of the residuals. The linear problems are often seen 
in regression analysis in statistics. On the other hand, the non-linear problems are generally used 
in the iterative method of refinement in which the model is approximated to the linear one with 
each iteration. 

Least Square Method Graph 

In linear regression, the line of best fit is a straight line as shown in the following diagram: 

 

The given data points are to be minimized by the method of reducing residuals or offsets of each 
point from the line. The vertical offsets are generally used in surface, polynomial and hyperplane 
problems, while perpendicular offsets are utilized in common practice. 



 

Least Square Method Formula 

The least-square method states that the curve that best fits a given set of observations, is said to 
be a curve having a minimum sum of the squared residuals (or deviations or errors) from the 
given data points. Let us assume that the given points of data are (x1, y1), (x2, y2), (x3, y3), …, (xn, 
yn) in which all x’s are independent variables, while all y’s are dependent ones. Also, suppose 
that f(x) is the fitting curve and d represents error or deviation from each given point. 

Now, we can write: 

d1 = y1 − f(x1) 

d2 = y2 − f(x2) 

d3 = y3 − f(x3) 

….. 

dn = yn – f(xn) 

The least-squares explain that the curve that best fits is represented by the property that the sum 
of squares of all the deviations from given values must be minimum, i.e: 

 

Sum = Minimum Quantity 



Suppose when we have to determine the equation of line of best fit for the given data, then we 
first use the following formula. 

The equation of least square line is given by Y = a + bX 

Normal equation for ‘a’:  

∑Y = na + b∑X 

Normal equation for ‘b’:  

∑XY = a∑X + b∑X2 

Solving these two normal equations we can get the required trend line equation. 

Thus, we can get the line of best fit with formula y = ax + b 

Solved Example 

The Least Squares Model for a set of data (x1, y1), (x2, y2), (x3, y3), …, (xn, yn) passes through the 
point (xa, ya) where xa is the average of the xi‘s and ya is the average of the yi‘s. The below 
example explains how to find the equation of a straight line or a least square line using the least 
square method. 

Question:  

Consider the time series data given below: 

xi 8 3 2 10 11 3 6 5 6 8 

yi 4 12 1 12 9 4 9 6 1 14 

Use the least square method to determine the equation of line of best fit for the data. Then plot 
the line. 

Solution: 

Mean of xi values = (8 + 3 + 2 + 10 + 11 + 3 + 6 + 5 + 6 + 8)/10 = 62/10 = 6.2 

Mean of yi values = (4 + 12 + 1 + 12 + 9 + 4 + 9 + 6 + 1 + 14)/10 = 72/10 = 7.2 

Straight line equation is y = a + bx. 

The normal equations are 

∑y = an + b∑x 

∑xy = a∑x + b∑x2 

x y x2 xy 

8 4 64 32 

3 12 9 36 



2 1 4 2 

10 12 100 120 

11 9 121 99 

3 4 9 12 

6 9 36 54 

5 6 25 30 

6 1 36 6 

8 14 64 112 

∑x = 62 ∑y = 72 ∑x2 = 468 ∑xy = 503 

Substituting these values in the normal equations, 

10a + 62b = 72….(1) 

62a + 468b = 503….(2) 

(1) × 62 – (2) × 10, 

620a + 3844b – (620a + 4680b) = 4464 – 5030 

-836b = -566 

b = 566/836 

b = 283/418 

b = 0.677 

Substituting b = 0.677 in equation (1), 

10a + 62(0.677) = 72 

10a + 41.974 = 72 

10a = 72 – 41.974 

10a = 30.026 

a = 30.026/10 

a = 3.0026 

Therefore, the equation becomes, 



y = a + bx 

y = 3.0026 + 0.677x 

 

This is the required trend line equation. 

Now, we can find the sum of squares of deviations from the obtained values as: 

d1 = [4 – (3.0026 + 0.677*8)] = (-4.4186) 

d2 = [12 – (3.0026 + 0.677*3)] = (6.9664) 

d3 = [1 – (3.0026 + 0.677*2)] = (-3.3566) 

d4 = [12 – (3.0026 + 0.677*10)] = (2.2274) 

d5 = [9 – (3.0026 + 0.677*11)] =(-1.4496) 

d6  = [4 – (3.0026 + 0.677*3)] = (-1.0336) 

d7 = [9 – (3.0026 + 0.677*6)] = (1.9354) 

d8 = [6 – (3.0026 + 0.677*5)] = (-0.3876) 

d9 = [1 – (3.0026 + 0.677*6)] = (-6.0646) 

d10 = [14 – (3.0026 + 0.677*8)] = (5.5814) 

∑d2 = (-4.4186)2 + (6.9664)2 + (-3.3566)2 + (2.2274)2 + (-1.4496)2 + (-1.0336)2 + (1.9354)2 + (-
0.3876)2 + (-6.0646)2 + (5.5814)2 = 159.27990 



Limitations for Least-Square Method 

The least-squares method is a very beneficial method of curve fitting. Despite many benefits, it 
has a few shortcomings too. One of the main limitations is discussed here. 

In the process of regression analysis, which utilizes the least-square method for curve fitting, it is 
inevitably assumed that the errors in the independent variable are negligible or zero. In such 
cases, when independent variable errors are non-negligible, the models are subjected to 
measurement errors. Therefore, here, the least square method may even lead to hypothesis 
testing, where parameter estimates and confidence intervals are taken into consideration due to 
the presence of errors occurring in the independent variables. 

Types of Regressions: 

Linear regression and logistic regression are two types of regression 

analysis techniques that are used to solve the regression problem using machine 

learning. They are the most prominent techniques of regression. But, there are 

many types of regression analysis techniques in machine learning, and their 

usage varies according to the nature of the data involved. 

This article will explain the different types of regression in machine learning, 

and under what condition each of them can be used. If you are new to machine 

learning, this article will surely help you in understanding the regression 

modeling concept.  

 

What is Regression Analysis? 

Regression analysis is a predictive modelling technique that analyzes the 

relation between the target or dependent variable and independent variable in a 

dataset. The different types of regression analysis techniques get used when the 

target and independent variables show a linear or non-linear relationship 

between each other, and the target variable contains continuous values. The 

regression technique gets used mainly to determine the predictor strength, 

forecast trend, time series, and in case of cause & effect relation.  

 

Regression analysis is the primary technique to solve the regression problems in 

machine learning using data modelling. It involves determining the best fit line, 

which is a line that passes through all the data points in such a way that distance 

of the line from each data point is minimized. 

Learn AI & ML Courses online from the World’s top Universities – Masters, 

Executive Post Graduate Programs, and Advanced Certificate Program in ML 

& AI to fast-track your career. 

 

Types of Regression Analysis Techniques 

There are many types of regression analysis techniques, and the use of each 

method depends upon the number of factors. These factors include the type of 

target variable, shape of the regression line, and the number of independent 

variables.  



Below are the different regression techniques: 
1. Linear Regression 

2. Logistic Regression 

3. Ridge Regression 

4. Lasso Regression 

5. Polynomial Regression 

6. Bayesian Linear Regression 

 

The different types of regression in machine learning techniques are 

explained below in detail: 

1. Linear Regression 

Linear regression is one of the most basic types of regression in machine 

learning. The linear regression model consists of a predictor variable and a 

dependent variable related linearly to each other. In case the data involves more 

than one independent variable, then linear regression is called multiple linear 

regression models.  

The below-given equation is used to denote the linear regression model: 

y=mx+c+e 

where m is the slope of the line, c is an intercept, and e represents the error in 

the model. 

  

Source 

The best fit line is determined by varying the values of m and c. The predictor 

error is the difference between the observed values and the predicted value. The 

values of m and c get selected in such a way that it gives the minimum predictor 

error. It is important to note that a simple linear regression model is susceptible 

to outliers. Therefore, it should not be used in case of big size data. 

There are different types of linear regression. The two major types of linear 

regression are simple linear regression and multiple linear regression. Below is 

the formula for simple linear regression. 



 

 Here, y is the predicted value of the dependent variable (y) for any value of the 

independent variable (x) 

 β0  is the intercepted, aka the value of y when x is zero 

 β1 is the regression coefficient, meaning the expected change 

in y when x increases 

 x is the independent variable  

 ∈ is the estimated error in the regression 

Simple linear regression can be used: 

 To find the intensity of dependency between two variables. Such as the rate of 

carbon emission and global warming.  

 To find the value of the dependent variable on an explicit value of the 

independent variable. For example, finding the amount of increase in 

atmospheric temperature with a certain amount of carbon dioxide emission.  

In multiple linear regression, a relationship is established between two or more 

independent variables and the corresponding dependent variables. Below is the 

equation for multiple linear regression.  

 Here,  y is the predicted value of the dependent variable  

 β0 = Value of y when other parameters are zero 

 β1X1= The regression coefficient of the first variable 

 …= Repeating the same no matter how many variables you test 

 βnXn= Regression coefficient of the last independent variable  

 ∈ = Estimated error in the regression 

Multiple linear regression can be used: 

 To estimate how strongly two or more independent variables influence the 

single dependent variable. Such as how location, time, condition, and area can 

influence the price of a property. 

 To find the value of the dependent variables at a definite condition of all the 

independent variables. For example, finding the price of a property located at a 

certain place, with a specific area and its condition.  

Also visit upGrad’s Degree Counselling page for all undergraduate and 

postgraduate programs. 

2. Logistic Regression 

Logistic regression is one of the types of regression analysis technique, which 

gets used when the dependent variable is discrete. Example: 0 or 1, true or false, 

etc. This means the target variable can have only two values, and a sigmoid 

curve denotes the relation between the target variable and the independent 

variable. 

Logit function is used in Logistic Regression to measure the relationship 

between the target variable and independent variables. Below is the equation 

that denotes the logistic regression. 



logit(p) = ln(p/(1-p)) = b0+b1X1+b2X2+b3X3….+bkXk 

where p is the probability of occurrence of the feature. 

 
Source 

For selecting logistic regression, as the regression analyst technique, it should 

be noted, the size of data is large with the almost equal occurrence of values to 

come in target variables. Also, there should be no multicollinearity, which 

means that there should be no correlation between independent variables in the 

dataset. 

3. Ridge Regression 

 

Source 

This is another one of the types of regression in machine learning which is 

usually used when there is a high correlation between the independent variables. 



This is because, in the case of multi collinear data, the least square estimates 

give unbiased values. But, in case the collinearity is very high, there can be 

some bias value. Therefore, a bias matrix is introduced in the equation of Ridge 

Regression. This is a powerful regression method where the model is less 

susceptible to overfitting.  

Below is the equation used to denote the Ridge Regression, where the 

introduction of λ (lambda) solves the problem of multicollinearity: 

β = (X^{T}X + λ*I)^{-1}X^{T}y 

Check out: 5 Breakthrough Applications of Machine Learning 

4. Lasso Regression 

Lasso Regression is one of the types of regression in machine learning that 

performs regularization along with feature selection. It prohibits the absolute 

size of the regression coefficient. As a result, the coefficient value gets nearer to 

zero, which does not happen in the case of Ridge Regression. 

Due to this, feature selection gets used in Lasso Regression, which allows 

selecting a set of features from the dataset to build the model. In the case of 

Lasso Regression, only the required features are used, and the other ones are 

made zero. This helps in avoiding the overfitting in the model. In case the 

independent variables are highly collinear, then Lasso regression picks only one 

variable and makes other variables to shrink to zero. 

  

Source 

Below is the equation that represents the Lasso Regression method: 

N^{-1}Σ^{N}_{i=1}f(x_{i}, y_{I}, α, β) 

5. Polynomial Regression 

Polynomial Regression is another one of the types of regression 

analysis techniques in machine learning, which is the same as Multiple Linear 

Regression with a little modification. In Polynomial Regression, the relationship 

between independent and dependent variables, that is X and Y, is denoted by 

the n-th degree. 



It is a linear model as an estimator. Least Mean Squared Method is used in 

Polynomial Regression also. The best fit line in Polynomial Regression that 

passes through all the data points is not a straight line, but a curved line, which 

depends upon the power of X or value of n. 

  

Source 

While trying to reduce the Mean Squared Error to a minimum and to get the 

best fit line, the model can be prone to overfitting. It is recommended to analyze 

the curve towards the end as the higher Polynomials can give strange results on 

extrapolation.  

Below equation represents the Polynomial Regression: 

l = β0+ β0x1+ε 

Read: Machine Learning Project Ideas 

6. Bayesian Linear Regression 

Bayesian Regression is one of the types of regression in machine learning that 

uses the Bayes theorem to find out the value of regression coefficients. In this 

method of regression, the posterior distribution of the features is determined 

instead of finding the least-squares. Bayesian Linear Regression is like both 

Linear Regression and Ridge Regression but is more stable than the simple 

Linear Regression. 

 

Simple Linear Regression in Machine Learning: 

Simple Linear Regression is a type of Regression algorithms that models the relationship 

between a dependent variable and a single independent variable. The relationship shown by a 

Simple Linear Regression model is linear or a sloped straight line, hence it is called Simple 

Linear Regression. 

The key point in Simple Linear Regression is that the dependent variable must be a 

continuous/real value. However, the independent variable can be measured on continuous or 

categorical values. 



Simple Linear regression algorithm has mainly two objectives: 

o Model the relationship between the two variables. Such as the relationship between 

Income and expenditure, experience and Salary, etc. 

o Forecasting new observations. Such as Weather forecasting according to 

temperature, Revenue of a company according to the investments in a year, etc. 

Simple Linear Regression Model: 

The Simple Linear Regression model can be represented using the below equation: 

22.5K 

Machine Learning - Data Description - Measures of Central Tendency: Mean, Median and 

Mode 

y= a0+a1x+ ε  

Where, 

a0= It is the intercept of the Regression line (can be obtained putting x=0) 

a1= It is the slope of the regression line, which tells whether the line is increasing or 

decreasing. 

ε = The error term. (For a good model it will be negligible) 

Implementation of Simple Linear Regression Algorithm using Python 

Problem Statement example for Simple Linear Regression: 

Here we are taking a dataset that has two variables: salary (dependent variable) and 

experience (Independent variable). The goals of this problem is: 

o We want to find out if there is any correlation between these two variables 

o We will find the best fit line for the dataset. 

o How the dependent variable is changing by changing the independent variable. 

In this section, we will create a Simple Linear Regression model to find out the best fitting 

line for representing the relationship between these two variables. 

To implement the Simple Linear regression model in machine learning using Python, we 

need to follow the below steps: 

Step-1: Data Pre-processing 

The first step for creating the Simple Linear Regression model is data pre-processing 



. We have already done it earlier in this tutorial. But there will be some changes, which are 

given in the below steps: 

o First, we will import the three important libraries, which will help us for loading the 

dataset, plotting the graphs, and creating the Simple Linear Regression model. 

 

 

 

 

1. import numpy as nm   

2. import matplotlib.pyplot as mtp   

3. import pandas as pd   

o Next, we will load the dataset into our code: 

 

 

 

 

1. data_set= pd.read_csv('Salary_Data.csv')   

By executing the above line of code (ctrl+ENTER), we can read the dataset on our Spyder 

IDE screen by clicking on the variable explorer option. 



 

The above output shows the dataset, which has two variables: Salary and Experience. 

Note: In Spyder IDE, the folder containing the code file must be saved as a working 

directory, and the dataset or csv file should be in the same folder. 

o After that, we need to extract the dependent and independent variables from the given 

dataset. The independent variable is years of experience, and the dependent variable is 

salary. Below is code for it: 

 

 

 

 

1. x= data_set.iloc[:, :-1].values   

2. y= data_set.iloc[:, 1].values    



In the above lines of code, for x variable, we have taken -1 value since we want to remove the 

last column from the dataset. For y variable, we have taken 1 value as a parameter, since we 

want to extract the second column and indexing starts from the zero. 

By executing the above line of code, we will get the output for X and Y variable as: 

 

In the above output image, we can see the X (independent) variable and Y (dependent) 

variable has been extracted from the given dataset. 

o Next, we will split both variables into the test set and training set. We have 30 

observations, so we will take 20 observations for the training set and 10 observations 

for the test set. We are splitting our dataset so that we can train our model using a 

training dataset and then test the model using a test dataset. The code for this is given 

below: 

 

 

 



 

1. # Splitting the dataset into training and test set.   

2. from sklearn.model_selection import train_test_split   

3. x_train, x_test, y_train, y_test= train_test_split(x, y, test_size= 1/3, random_state=0)   

By executing the above code, we will get x-test, x-train and y-test, y-train dataset. Consider 

the below images: 

Test-dataset: 

 

Training Dataset: 



 

o For simple linear Regression, we will not use Feature Scaling. Because Python 

libraries take care of it for some cases, so we don't need to perform it here. Now, our 

dataset is well prepared to work on it and we are going to start building a Simple 

Linear Regression model for the given problem. 

Step-2: Fitting the Simple Linear Regression to the Training Set: 

Now the second step is to fit our model to the training dataset. To do so, we will import 

the LinearRegression class of the linear_model library from the scikit learn. After 

importing the class, we are going to create an object of the class named as a regressor. The 

code for this is given below: 

 

 

 

 



1. #Fitting the Simple Linear Regression model to the training dataset   

2. from sklearn.linear_model import LinearRegression   

3. regressor= LinearRegression()   

4. regressor.fit(x_train, y_train)   

In the above code, we have used a fit() method to fit our Simple Linear Regression object to 

the training set. In the fit() function, we have passed the x_train and y_train, which is our 

training dataset for the dependent and an independent variable. We have fitted our regressor 

object to the training set so that the model can easily learn the correlations between the 

predictor and target variables. After executing the above lines of code, we will get the below 

output. 

Output: 

Out[7]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False) 

Step: 3. Prediction of test set result: 

dependent (salary) and an independent variable (Experience). So, now, our model is ready to 

predict the output for the new observations. In this step, we will provide the test dataset (new 

observations) to the model to check whether it can predict the correct output or not. 

We will create a prediction vector y_pred, and x_pred, which will contain predictions of test 

dataset, and prediction of training set respectively. 

 

 

 

 

1. #Prediction of Test and Training set result   

2. y_pred= regressor.predict(x_test)   

3. x_pred= regressor.predict(x_train)   

On executing the above lines of code, two variables named y_pred and x_pred will generate 

in the variable explorer options that contain salary predictions for the training set and test set. 

Output: 

You can check the variable by clicking on the variable explorer option in the IDE, and also 

compare the result by comparing values from y_pred and y_test. By comparing these values, 

we can check how good our model is performing. 

Step: 4. visualizing the Training set results: 



Now in this step, we will visualize the training set result. To do so, we will use the scatter() 

function of the pyplot library, which we have already imported in the pre-processing step. 

The scatter () function will create a scatter plot of observations. 

In the x-axis, we will plot the Years of Experience of employees and on the y-axis, salary of 

employees. In the function, we will pass the real values of training set, which means a year of 

experience x_train, training set of Salaries y_train, and color of the observations. Here we are 

taking a green color for the observation, but it can be any color as per the choice. 

Now, we need to plot the regression line, so for this, we will use the plot() function of the 

pyplot library. In this function, we will pass the years of experience for training set, predicted 

salary for training set x_pred, and color of the line. 

Next, we will give the title for the plot. So here, we will use the title() function of 

the pyplot library and pass the name ("Salary vs Experience (Training Dataset)". 

After that, we will assign labels for x-axis and y-axis using xlabel() and ylabel() function. 

Finally, we will represent all above things in a graph using show(). The code is given below: 

 

 

 

 

1. mtp.scatter(x_train, y_train, color="green")    

2. mtp.plot(x_train, x_pred, color="red")     

3. mtp.title("Salary vs Experience (Training Dataset)")   

4. mtp.xlabel("Years of Experience")   

5. mtp.ylabel("Salary(In Rupees)")   

6. mtp.show()    

Output: 

By executing the above lines of code, we will get the below graph plot as an output. 



 

In the above plot, we can see the real values observations in green dots and predicted values 

are covered by the red regression line. The regression line shows a correlation between the 

dependent and independent variable. 

The good fit of the line can be observed by calculating the difference between actual values 

and predicted values. But as we can see in the above plot, most of the observations are 

close to the regression line, hence our model is good for the training set. 

Step: 5. visualizing the Test set results: 

In the previous step, we have visualized the performance of our model on the training set. 

Now, we will do the same for the Test set. The complete code will remain the same as the 

above code, except in this, we will use x_test, and y_test instead of x_train and y_train. 

Here we are also changing the color of observations and regression line to differentiate 

between the two plots, but it is optional. 

 

 

 

 

1. #visualizing the Test set results   

2. mtp.scatter(x_test, y_test, color="blue")    

3. mtp.plot(x_train, x_pred, color="red")     



4. mtp.title("Salary vs Experience (Test Dataset)")   

5. mtp.xlabel("Years of Experience")   

6. mtp.ylabel("Salary(In Rupees)")   

7. mtp.show()   

Output: 

By executing the above line of code, we will get the output as: 

 

In the above plot, there are observations given by the blue color, and prediction is given by 

the red regression line. As we can see, most of the observations are close to the regression 

line, hence we can say our Simple Linear Regression is a good model and able to make good 

predictions. 

 



  
Source 

People often wonder “what is regression in AI” or “what is regression in machine learning”. 

Machine learning is a subset of AI; hence, both questions have the same answer.  

In the case of regression in AI, different algorithms are used make a machine learn the 

relationship between the provided data sets and make predictions accordingly. 

Hence, regression in AI is mainly used to add a level of automation to the machines.  

Regression AI is often used in sectors like finance and investment, where establishing a 

relationship between a single dependent variable and multiple independent variables is a 

common case. A common example of regression AI will be factors that estimate a house’s 

price based on its location, size, ROI, etc.  

Regression plays a vital role in predictive modelling and is found in many machine learning 

applications. Algorithms from the regressions provide different perspectives regarding the 

relationship between the variables and their outcomes. These set models could then be used 

as a guideline for fresh input data or to find missing data.  

As the models are trained to understand a variety of relationships between different variables, 

they are often extremely helpful in predicting the portfolio performance or stocks and trends. 

These implementations fall under machine learning in finance.  

The very common use of regression in AI includes: 

 

 Predicting a company’s sales or marketing success 

 Generating continuous outcomes like stock prices 

 Forecasting different trends or customer’s purchase behaviour 



Hope this helped to understand what is regression in AI or what is regression in machine 

learning.  

Polynomial Regression 

o Polynomial Regression is a regression algorithm that models the relationship between 

a dependent(y) and independent variable(x) as nth degree polynomial. The 

Polynomial Regression equation is given below: 

y= b0+b1x1+ b2x1
2
+ b2x1

3
+...... bnx1

n
 

o It is also called the special case of Multiple Linear Regression in ML. Because we add 

some polynomial terms to the Multiple Linear regression equation to convert it into 

Polynomial Regression. 

o It is a linear model with some modification in order to increase the accuracy. 

o The dataset used in Polynomial regression for training is of non-linear nature. 

o It makes use of a linear regression model to fit the complicated and non-linear 

functions and datasets. 

o Hence, "In Polynomial regression, the original features are converted into 

Polynomial features of required degree (2,3,..,n) and then modeled using a linear 

model." 

Need for Polynomial Regression: 

The need of Polynomial Regression in ML can be understood in the below points: 

o If we apply a linear model on a linear dataset, then it provides us a good result as we 

have seen in Simple Linear Regression, but if we apply the same model without any 

modification on a non-linear dataset, then it will produce a drastic output. Due to 

which loss function will increase, the error rate will be high, and accuracy will be 

decreased. 

o So for such cases, where data points are arranged in a non-linear fashion, we 

need the Polynomial Regression model. We can understand it in a better way using 

the below comparison diagram of the linear dataset and non-linear dataset. 



 

o In the above image, we have taken a dataset which is arranged non-linearly. So if we 

try to cover it with a linear model, then we can clearly see that it hardly covers any 

data point. On the other hand, a curve is suitable to cover most of the data points, 

which is of the Polynomial model. 

o Hence, if the datasets are arranged in a non-linear fashion, then we should use the 

Polynomial Regression model instead of Simple Linear Regression. 

Note: A Polynomial Regression algorithm is also called Polynomial Linear Regression 

because it does not depend on the variables, instead, it depends on the coefficients, which are 

arranged in a linear fashion. 

Equation of the Polynomial Regression Model: 

Simple Linear Regression equation:         y = b0+b1x         .........(a) 

Multiple Linear Regression equation:         y= b0+b1x+ b2x2+ b3x3+....+ bnxn         .........(b) 

Polynomial Regression equation:         y= b0+b1x + b2x
2
+ b3x

3
+....+ bnx

n
         ..........(c) 

x 

When we compare the above three equations, we can clearly see that all three equations are 

Polynomial equations but differ by the degree of variables. The Simple and Multiple Linear 

equations are also Polynomial equations with a single degree, and the Polynomial regression 

equation is Linear equation with the nth degree. So if we add a degree to our linear equations, 

then it will be converted into Polynomial Linear equations. 



Note: To better understand Polynomial Regression, you must have knowledge of Simple 

Linear Regression. 

Implementation of Polynomial Regression using Python: 

Here we will implement the Polynomial Regression using Python. We will understand it by 

comparing Polynomial Regression model with the Simple Linear Regression model. So first, 

let's understand the problem for which we are going to build the model. 

Problem Description: There is a Human Resource company, which is going to hire a new 

candidate. The candidate has told his previous salary 160K per annum, and the HR have to 

check whether he is telling the truth or bluff. So to identify this, they only have a dataset of 

his previous company in which the salaries of the top 10 positions are mentioned with their 

levels. By checking the dataset available, we have found that there is a non-linear 

relationship between the Position levels and the salaries. Our goal is to build a Bluffing 

detector regression model, so HR can hire an honest candidate. Below are the steps to build 

such a model. 

 

Steps for Polynomial Regression: 

The main steps involved in Polynomial Regression are given below: 

o Data Pre-processing 

o Build a Linear Regression model and fit it to the dataset 

o Build a Polynomial Regression model and fit it to the dataset 

o Visualize the result for Linear Regression and Polynomial Regression model. 

o Predicting the output. 



Note: Here, we will build the Linear regression model as well as Polynomial Regression to 

see the results between the predictions. And Linear regression model is for reference. 

Data Pre-processing Step: 

The data pre-processing step will remain the same as in previous regression models, except 

for some changes. In the Polynomial Regression model, we will not use feature scaling, and 

also we will not split our dataset into training and test set. It has two reasons: 

o The dataset contains very less information which is not suitable to divide it into a test 

and training set, else our model will not be able to find the correlations between the 

salaries and levels. 

o In this model, we want very accurate predictions for salary, so the model should have 

enough information. 

The code for pre-processing step is given below: 

 

 

 

 

1. # importing libraries   

2. import numpy as nm   

3. import matplotlib.pyplot as mtp   

4. import pandas as pd   

5.    

6. #importing datasets   

7. data_set= pd.read_csv('Position_Salaries.csv')   

8.    

9. #Extracting Independent and dependent Variable   

10. x= data_set.iloc[:, 1:2].values   

11. y= data_set.iloc[:, 2].values   

Explanation: 

o In the above lines of code, we have imported the important Python libraries to import 

dataset and operate on it. 



o Next, we have imported the dataset 'Position_Salaries.csv', which contains three 

columns (Position, Levels, and Salary), but we will consider only two columns 

(Salary and Levels). 

o After that, we have extracted the dependent(Y) and independent variable(X) from the 

dataset. For x-variable, we have taken parameters as [:,1:2], because we want 1 

index(levels), and included :2 to make it as a matrix. 

Output: 

By executing the above code, we can read our dataset as: 

 

As we can see in the above output, there are three columns present (Positions, Levels, and 

Salaries). But we are only considering two columns because Positions are equivalent to the 

levels or may be seen as the encoded form of Positions. 

Here we will predict the output for level 6.5 because the candidate has 4+ years' experience 

as a regional manager, so he must be somewhere between levels 7 and 6. 

Building the Linear regression model: 

Now, we will build and fit the Linear regression model to the dataset. In building polynomial 

regression, we will take the Linear regression model as reference and compare both the 

results. The code is given below: 



 

 

 

 

1. #Fitting the Linear Regression to the dataset   

2. from sklearn.linear_model import LinearRegression   

3. lin_regs= LinearRegression()   

4. lin_regs.fit(x,y)   

In the above code, we have created the Simple Linear model using lin_regs object 

of LinearRegression class and fitted it to the dataset variables (x and y). 

Output: 

Out[5]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False) 

Building the Polynomial regression model: 

Now we will build the Polynomial Regression model, but it will be a little different from the 

Simple Linear model. Because here we will use PolynomialFeatures class 

of preprocessing library. We are using this class to add some extra features to our dataset. 

 

 

 

 

1.  #Fitting the Polynomial regression to the dataset   

2. from sklearn.preprocessing import PolynomialFeatures   

3. poly_regs= PolynomialFeatures(degree= 2)   

4. x_poly= poly_regs.fit_transform(x)   

5. lin_reg_2 =LinearRegression()   

6. lin_reg_2.fit(x_poly, y)   

In the above lines of code, we have used poly_regs.fit_transform(x), because first we are 

converting our feature matrix into polynomial feature matrix, and then fitting it to the 

Polynomial regression model. The parameter value(degree= 2) depends on our choice. We 

can choose it according to our Polynomial features. 



After executing the code, we will get another matrix x_poly, which can be seen under the 

variable explorer option: 

 

Next, we have used another LinearRegression object, namely lin_reg_2, to fit 

our x_poly vector to the linear model. 

Output: 

Out[11]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, 

normalize=False) 

Visualizing the result for Linear regression: 

Now we will visualize the result for Linear regression model as we did in Simple Linear 

Regression. Below is the code for it: 

 

 



 

 

1. #Visulaizing the result for Linear Regression model   

2. mtp.scatter(x,y,color="blue")   

3. mtp.plot(x,lin_regs.predict(x), color="red")   

4. mtp.title("Bluff detection model(Linear Regression)")   

5. mtp.xlabel("Position Levels")   

6. mtp.ylabel("Salary")   

7. mtp.show()   

Output: 

 

In the above output image, we can clearly see that the regression line is so far from the 

datasets. Predictions are in a red straight line, and blue points are actual values. If we 

consider this output to predict the value of CEO, it will give a salary of approx. 600000$, 

which is far away from the real value. 

So we need a curved model to fit the dataset other than a straight line. 

Visualizing the result for Polynomial Regression 

Here we will visualize the result of Polynomial regression model, code for which is little 

different from the above model. 

Code for this is given below: 

 

 



 

 

1. #Visulaizing the result for Polynomial Regression   

2. mtp.scatter(x,y,color="blue")   

3. mtp.plot(x, lin_reg_2.predict(poly_regs.fit_transform(x)), color="red")   

4. mtp.title("Bluff detection model(Polynomial Regression)")   

5. mtp.xlabel("Position Levels")   

6. mtp.ylabel("Salary")   

7. mtp.show()   

In the above code, we have taken lin_reg_2.predict(poly_regs.fit_transform(x), instead of 

x_poly, because we want a Linear regressor object to predict the polynomial features matrix. 

Output: 

 

As we can see in the above output image, the predictions are close to the real values. The 

above plot will vary as we will change the degree. 

For degree= 3: 

If we change the degree=3, then we will give a more accurate plot, as shown in the below 

image. 



 

SO as we can see here in the above output image, the predicted salary for level 6.5 is near to 

170K$-190k$, which seems that future employee is saying the truth about his salary. 

Degree= 4: Let's again change the degree to 4, and now will get the most accurate plot. 

Hence we can get more accurate results by increasing the degree of Polynomial. 

 

Predicting the final result with the Linear Regression model: 

Now, we will predict the final output using the Linear regression model to see whether an 

employee is saying truth or bluff. So, for this, we will use the predict() method and will pass 

the value 6.5. Below is the code for it: 

 

 

 



 

1. lin_pred = lin_regs.predict([[6.5]])   

2. print(lin_pred)   

Output: 

[330378.78787879] 

Predicting the final result with the Polynomial Regression model: 

Now, we will predict the final output using the Polynomial Regression model to compare 

with Linear model. Below is the code for it: 

 

 

 

 

1. poly_pred = lin_reg_2.predict(poly_regs.fit_transform([[6.5]]))   

2. print(poly_pred)   

Output: 

[158862.45265153] 

As we can see, the predicted output for the Polynomial Regression is [158862.45265153], 

which is much closer to real value hence, we can say that future employee is saying true. 

Metrics for Regression: 

Regression is a problem where we try to predict a continuous dependent variable using a set of 

independent variables. For example, weather forecasting, market trends, etc. These problems 

are used to answer “How much?” or “How many?” 

In regression problems, the prediction error is used to define the model performance. The 

prediction error is also referred to as residuals and it is defined as the difference between the 

actual and predicted values. 



 

Source 

The regression model tries to fit a line that produces the smallest difference between predicted 

and actual(measured) values. 

Residuals are important when determining the quality of a model. You can examine residuals 

in terms of their magnitude and/or whether they form a pattern. 

 Where the residuals are all 0, the model predicts perfectly. The further residuals are from 

0, the less accurate the model is. 

 Where the average residual is not 0, it implies that the model is systematically biased (i.e., 

consistently over-or under-predicting). 

 Where residuals contain patterns, it implies that the model is qualitatively wrong, as it is 

failing to explain some properties of the data. 

Residual = actual value — predicted value 

error(e) = y — ŷ 



So, the question is when you have residuals then why do we need different metrics? Let’s 

find out... 

We can calculate the residual for every point in our data set, and each of these residuals will be 

of use in assessment. 

 

Source: Displayr 

Residual = Inflation — Predicted 

We can technically inspect all residuals to judge the model’s accuracy, but this does not scale 

if we have thousands or millions of data points. That’s why we have summary measurements 

that take our collection of residuals and condense them into a single value representing our 

model's predictive ability. 



Now we’ll turn our focus to metrics of our model. 

Regression Evaluation Metrics: 

In this section, we will take a closer look at the popular metrics for regression models. 

Mean Absolute Error (MAE): 

It is the average of the absolute differences between the actual value and the model’s predicted 

value. 

 

Mean Absolute Error 

where, 

N = total number of data points 

Yi = actual value 

Ŷi = predicted value 

If we don’t take the absolute values, then the negative difference will cancel out the positive 

difference and we will be left with a zero upon summation. 



A small MAE suggests the model is great at prediction, while a large MAE suggests that your 

model may have trouble in certain areas. MAE of 0 means that your model is a perfect 

predictor of the outputs. 

Here’s a Scikit-learn implementation of MAE: 

 

Mean Absolute Error 

The mean absolute error (MAE) has the same unit as the original data, and it can only be 

compared between models whose errors are measured in the same units. 

The bigger the MAE, the more critical the error is. It is robust to outliers. Therefore, by taking 

the absolute values, MAE can deal with the outliers 

Here, a big error doesn’t overpower a lot of small errors and thus the output provides us with a 

relatively unbiased understanding of how the model is performing. Hence, it fails to punish the 

bigger error terms. 



MAE is not differentiable so we have to apply various optimizers like Gradient descent which 

can be differentiable. 

Mean Squared Error (MSE): 

It is the average of the squared differences between the actual and the predicted values. 

Lower the value, the better the regression model. 

 

Mean Squared Error 

where, 

n = total number of data points 

yi = actual value 

ŷi = predicted value 

Its unit is the square of the variable’s unit. 

Here’s a Scikit-learn implementation of MSE: 



 

Mean Squared Error 

If you have outliers in the dataset then it penalizes the outliers most and the calculated MSE is 

bigger. So, in short, It is not Robust to outliers which were an advantage in MAE. 

MSE uses the square operation to remove the sign of each error value and to punish large 

errors. 

As we take the square of the error, the effect of larger errors become more pronounced then 

smaller error, hence the model can now focus more on the larger errors. 

The main reason this is not that useful is that if we make a single very bad prediction, the 

squaring will make the error even worse and it may skew the metric towards overestimating 

the model’s badness. 



On the other hand, if all the errors are small, or rather, smaller than 1, then we may 

underestimate the model’s badness. 

Root Mean Squared Error (RMSE): 

It is the average root-squared difference between the real value and the predicted value. By 

taking a square root of MSE, we get the Root Mean Square Error. 

We want the value of RMSE to be as low as possible, as lower the RMSE value is, the better 

the model is with its predictions. A Higher RMSE indicates that there are large deviations 

between the predicted and actual value. 

 

Root Mean Squared Error 

where, 

n = total number of data points 

yj = actual value 

ŷj= predicted value 

Here’s a Scikit-learn implementation of RMSE: 



 

Root Mean Squared Error 

Max Error: 

While RMSE is the most common metric, it can be hard to interpret. One alternative is to look 

at quantiles of the distribution of the absolute percentage errors. The Max-Error metric is 

the worst-case error between the predicted value and the true value. 

Here’s a Scikit-learn implementation of Max Error: 



 

Max Error 

R² score, the coefficient of determination: 

R-squared explains to what extent the variance of one variable explains the variance of the 

second variable. In other words, it measures the proportion of variance of the dependent 

variable explained by the independent variable. 

R squared is a popular metric for identifying model accuracy. It tells how close are the data 

points to the fitted line generated by a regression algorithm. A larger R squared value indicates 

a better fit. This helps us to find the relationship between the independent variable towards the 

dependent variable. 

R² score ranges from 0 to 1. The closest to 1 the R², the better the regression model is. If R² is 

equal to 0, the model is not performing better than a random model. If R² is negative, the 

regression model is erroneous. 

It is the ratio of the sum of squares and the total sum of squares 



 

R2 Score 

where SSE is the sum of the square of the difference between the actual value and the 

predicted value 

 

Sum of Squared Errors 

and, SST is the total sum of the square of the difference between the actual value and the 

mean of the actual value. 

 

Total sum of squares 

Here, yi is the observed target value, ŷi is the predicted value, and y-bar is the mean 

value, m represents the total number of observations. 

When we add new features in our data, R2 score starts increasing or constant but never 

decreases because It assumes that while adding more data variance of data increases. 

But the problem is when we add an irrelevant feature in the dataset then at that time R2 

sometimes starts increasing which is incorrect. 

Here’s a Scikit-learn implementation of R2 Score: 



 

R2 Score 

R2 describes the proportion of variance of the dependent variable explained by the regression 

model. If the regression model is “perfect”, SSE is zero, and R2 is 1. If the regression model is 

a total failure, SSE is equal to SST, no variance is explained by the regression, and R2 is zero. 

Adjusted R-Square: 

Adjusted R² is the same as standard R² except that it penalizes models when additional 

features are added. 

To counter the problem which is faced by R-square, Adjusted r-square penalizes adding more 

independent variables which don’t increase the explanatory power of the regression model. 

The value of adjusted r-square is always less than or equal to the value of r-square. 

It ranges from 0 to 1, the closer the value is to 1, the better it is. 



It measures the variation explained by only the independent variables that actually affect the 

dependent variable. 

 

Adjusted R-Squared 

where 

n is the number of data points 

k is the number of independent variables in your model 

 

 

 



UNIT–III 

 

Classification: Classification problem, Probability based approach, Logistic Regression- 

log-odd, sigmoid transformation. MNIST, Training a binary classifier, Performance 

measures: Measuring accuracy using cross validation, Confusion matrix, Precision/Recall 

and Tradeoffs, ROC curve, Multiclass classification, Error analysis, Multilabel 

classification, Multioutput classification Introduction to gradient descent 

 

 

Classification is a central topic in machine learning that has to do with teaching machines 

how to group together data by particular criteria. Classification is the process where 

computers group data together based on predetermined characteristics — this is called 

supervised learning. There is an unsupervised version of classification, called clustering 

where computers find shared characteristics by which to group data when categories are not 

specified. 

 

A common example of classification comes with detecting spam emails. To write a program 

to filter out spam emails, a computer programmer can train a machine learning algorithm 

with a set of spam-like emails labelled as spam and regular emails labelled as not-spam. The 

idea is to make an algorithm that can learn characteristics of spam emails from this training 

set so that it can filter out spam emails when it encounters new emails. 

 

Classification is an important tool in today’s world, where big data is used to make all kinds 

of decisions in government, economics, medicine, and more. Researchers have access to huge 

amounts of data, and classification is one tool that helps them to make sense of the data and 

find patterns. 

 

While classification in machine learning requires the use of (sometimes) complex algorithms, 

classification is something that humans do naturally everyday. Classification is simply 

grouping things together according to similar features and attributes. When you go to a 

grocery store, you can fairly accurately group the foods by food group (grains, fruit, 

vegetables, meat, etc.) In machine learning, classification is all about teaching computers to 

do the same. 

 

Here are a few examples of situations where classification is useful: 

 

Classifying Images 

Speech  

Tagging  

Music  

Identification 



 



 





 

Introduction to Probabilistic Classification:  

Classifying cats and dogs 

Imagine creating a model with the sole purpose of classifying cats and dogs. The 

classification model will not be perfect and therefore wrongly classify certain observations. 

Some cats will be classified as dogs and vice versa. That’s life. In this example, the model 

classifies 100 cats and dogs. The confusion matrix is a commonly used visualization tool to 

show prediction accuracy and Figure 1 shows the confusion matrix for this example. 

 
Figure 1: Confusion matrix for classification of 100 cats and dogs. Source: Author. 

Let’s focus on the 12 observations where the model predicts a cat while in reality it is a dog. 

If the model predicts 51% probability of cat and it turns out to be a dog, for sure that’s 

possible. However, if the model predicts 95% probability of cat and it turns out to be a dog? 

This seems highly unlikely. 



 
Figure 2: Predicted probability of cat and the classification threshold. Source: Author. 

Classifiers use a predicted probability and a threshold to classify the observations. Figure 2 

visualizes the classification for a threshold of 50%. It seems intuitive to use a threshold of 

50% but there is no restriction on adjusting the threshold. So, in the end the only thing that 

matters is the ordering of the observations. Changing the objective to predict probabilities 

instead of labels requires a different approach. For this, we enter the field of probabilistic 

classification. 

Evaluation metric 1: Logloss 

Let us generalize from cats and dogs to class labels of 0 and 1. Class probabilities are any real 

number between 0 and 1. The model objective is to match predicted probabilities with class 

labels, i.e. to maximize the likelihood, given in Eq. 1, of observing class labels given the 

predicted probabilities. 

 
Equation 1: Likelihood for class labels y and predicted probabilities based on features x. 

A major drawback of the likelihood is that if the number of observations grow, the product of 

the individual probabilities becomes increasingly small. So, with enough data, the likelihood 

will underflow the numerical precision of any computer. Next to that, a product of parameters 

is difficult to differentiate. That’s the reason the logarithm of the likelihood is preferred, 

commonly referred to as the loglikelihood. A logarithm is a monotonically increasing 

function of its argument. Therefore, maximization of the log of a function is equivalent to 

maximization of the function itself. 

 
Equation 2: Logloss for class labels y and predicted probabilities based on features x. 

Nonetheless, the loglikelihood still scales with the number of observations so an average 

loglikelihood is better metric to explain the observed variation. However, in practice, most 

people minimize the negative average loglikelihood instead maximizing the average 



loglikelihood because optimizers normally minimize functions. Data scientists commonly 

refer to this metric as Logloss, as given in Eq. 2. For a more elaborate discussion of the 

Logloss and its relation to the evaluation metrics normally used in classification model 

evaluation, I refer you to this article. 

Evaluation metric 2: Brier Score 

Next to the Logloss, the Brier Score, as given in Eq. 3, is commonly used as an evaluation 

metric for predicted probabilities. In essence, it is a quadratic loss on the predicted 

probabilities and the class labels. Note the similarity between the Mean Squared Error (MSE) 

used in regression model evaluation. 

 
Equation 3: Brier Score for class labels y and predicted probabilities based on features x. 

However, a notable difference with the MSE is that the minimum Brier Score is not 0. The 

Brier Score is the squared loss on the labels and probabilities, and therefore by definition is 

not 0. Simply said, the minimum is not 0 if the underlying process is non-deterministic which 

is the reason to use probabilistic classification in the first place. In order to cope with this 

problem, the probabilities are commonly evaluated on a relative basis with other probabilistic 

classifiers using for instance the Brier Skill Score. 

There are perhaps four main types of classification tasks that you may encounter; they are: 

 Binary Classification 

 Multi-Class Classification 

 Multi-Label Classification 

 Imbalanced Classification 

Binary Classification 

Binary classification refers to those classification tasks that have two class labels. 

Examples include: 

 Email spam detection (spam or not). 
 Churn prediction (churn or not). 
 Conversion prediction (buy or not). 

Typically, binary classification tasks involve one class that is the normal state and another 

class that is the abnormal state. 

For example ―not spam‖ is the normal state and ―spam‖ is the abnormal state. Another 

example is ―cancer not detected‖ is the normal state of a task that involves a medical test and 

―cancer detected‖ is the abnormal state. 



The class for the normal state is assigned the class label 0 and the class with the abnormal 

state is assigned the class label 1. 

It is common to model a binary classification task with a model that predicts a Bernoulli 

probability distribution for each example. 

The Bernoulli distribution is a discrete probability distribution that covers a case where an 

event will have a binary outcome as either a 0 or 1. For classification, this means that the 

model predicts a probability of an example belonging to class 1, or the abnormal state. 

Popular algorithms that can be used for binary classification include: 

 Logistic Regression 
 k-Nearest Neighbors 
 Decision Trees 
 Support Vector Machine 
 Naive Bayes 

Some algorithms are specifically designed for binary classification and do not natively 

support more than two classes; examples include Logistic Regression and Support Vector 

Machines. 

Logistic Regression 

Logistic Regression is one of the supervised machine learning algorithms used for 

classification. In logistic regression, the dependent variable is categorical. 

The objective of the model is, given the independent variables, what is the class likely to be? 

[For binary classification, 0 or 1] 

Why not Linear Regression? 

In Logistic Regression-binary classification, we will predict the output as 0 or 1. 

Example: 

1. Diabetic (1) or not (0) 
2. Spam (1) or Ham (0) 
3. Malignant(1) or not (0) 

In Linear Regression, output prediction will be continuous. So, if we fit a linear model, it 

won’t predict the output between 0 and 1. 

So, we have to transform the linear model to the S -curve using the sigmoid function, which 

will convert the input between 0 and 1. 

Sigmoid Function 



The sigmoid function is used to convert the input into range 0 and 1. 

 

1. If z → -∞, sigmoid(z) → 0 
2. If z → ∞ , sigmoid(z) → 1 
3. If z=0, sigmoid(z)=0.5 

 
Sigmoid Curve [Image by Author] 

So, if we input the linear model to the sigmoid function, it will convert the input between 

range 0 and 1 

In Linear regression, the predicted value of y is calculated by using the below equation. 

 

In logistic regression, ŷ is p(y=1|x). This means ŷ provides an estimate of the probability that 

y=1, given a particular set of values for independent variables(x) 

→ If the predicted value is close to 1 means we can be more certain that the data point 



belongs to class 1.  

→ If the predicted value is close to 0 means we can be more certain that the data point 

belongs to class 0. 

How to determine the best fit sigmoid 

curve? 

Cost Function 

Why not least squares as cost function? 

In logistic regression, the actual y value will be 0 or 1. The predicted y value ŷ will be 

between 0 and 1. 

In the least-squares method, the error is calculated by subtracting actual y and predicted y 

value and squaring them 

Error =(y-ŷ)² 

If we calculate least squares for the misclassified data point say 

y=0 and ŷ is close to 1, the error will be very less only. 

The cost incurred is very less even for misclassified data points. This is one of the reasons, 

least squares is not used as a cost function for logistic regression. 

Cost Function — Log loss (Binary Cross Entropy) 

Log loss or Binary Cross Entropy is used as a cost function for logistic regression 

 

Let’s check some properties of the classification cost function 

1. If y=ŷ, Error should be zero 
2. The error should be very high for misclassification 
3. The error should be greater than or equal to zero. 

Let’s check whether these properties hold good for the log loss or binary cross-entropy 

function. 

1. If y=ŷ, the error should be zero. 

Case 1: y=0 and ŷ=0 or close to 0 



 

Case 2: y=1 and ŷ=1 or close to 1. 

 

ln1 =0 and ln0 = -∞ 

2. The error should be very high for misclassification 

Case 1: y=1 and ŷ=0 or close to 0 

 

Case 2: y=0 and ŷ=1 or close to 1 



 

The error tends to be very high for misclassified data points. 

3.The error should be greater than or equal to zero. 

Error= -{y ln ŷ + (1-y) ln (1-ŷ)} 

→ y is either o or 1 

→ ŷ is always between 0 and 1 

→ ln ŷ is negative and ln (1-ŷ) is negative 

→ negative sign before the expression is included to make the error positive [ In linear 

regression least-squares method, we will be squaring the error] 

So, the error will be always greater than or equal to zero. 

Interpreting Model coefficient 

To interpret the model coefficient, we need to know the terms odds, log odds, odds ratio. 

Odds, Log Odds, Odds Ratio 

Odds 

Odds is defined as the probability of an event occurring divided by the probability of the 

event not occurring. 

 

Example: Odds of getting 1 while rolling a fair die 



 

Log odds (Logit Function) 

Log odds =ln(p/1-p) 

After applying the sigmoid function, we know that 

 

From this equation, odds can be written as, 

 

Log Odds = ln(p/1-p) = β 0+ β 1x 

So, we can convert the logistic regression as a linear function by using log odds. 

Odds Ratio 

Odds Ratio is the ratio of two odds 

 

Interpreting Logistic Regression Coefficient 

 

Logistic Regression model 

β 0 → Log odds is β 0 when X is zero. 

β 1 → Change in log-odds associated with variable X1. 



If X1 is numerical variables,β 1 indicates, for every one-unit increase in X1, log odds is 

increased by β 1. 

If X1 is a binary categorical variable, β 1 indicates, change in log odds for x1=1 relative to 

X1=0. 

How to get Odds Ratio from the model 

coefficient? 

Odds Ratio in Logistic Regression 

The odds ratio of an independent variable in logistic regression depends on how that odds 

change with one unit increase in that particular variable by keeping all the other independent 

variables constant. 

β 1 → Change in log-odds associated with variable X1. 

The odds Ratio for variable X1 is the exponential of β 1 

 



Derivation of Odds Ratio from Model Coefficient 

 

Evaluation Metrics for Classification 

1. Accuracy 
2. TPR 
3. TNR 
4. FPR 
5. PPR 
6. F1 Score 



Accuracy 

Accuracy measures the proportion of actual predictions out of total predictions. Here we 

didn’t know the exact distribution of error. [Distribution between False-positive and False 

negative] 

 

Confusion Matrix [Image by Author] 

In the accuracy metric, we didn’t know the exact distribution of error[Distribution between 

False-positive and False negative]. So, we go for other metrics. 

Sensitivity or Recall or True Positive rate(TPR) 

True Positive Rate measures the proportion of actual positives that are correctly classified. 

Specificity or True Negative Rate (TNR) 

True Negative Rate measure the proportion of actual negatives that are correctly classified. 

False Positive rate or (1-Specificity) 

False Positive Rate measure the proportion of actual negatives that are misclassified. 

Positive Predicted Rate (PPR) or Precision 

Positive Predicted Rate measures the proportion of the actual positives out of total positive 

predictions. 

F1 Score 

F1 Score is the harmonic mean of precision and recall 

How to calculate the harmonic mean? 

1. Take the inverse of precision and recall (1/precision,1/recall) 
2. Find the average of inverse of precision and recall 



 

3. Then, inverse the result. 

 

Which metric to chose? 

It depends on the problem statement. 

1. Accuracy → When we need to know the prediction accuracy like how many 1’s classified as 
1 and how many 0’s classified as 0 but not concerned with the distribution of errors(FP and 
FN). 

2. Sensitivity → When we want all our positive records to be identified correctly. More 
importance on False Negative[In cancer dataset, cancer patients should be predicted 
correctly] 

3. Specificity → When we don’t want any negative labels to be misclassified.More importance 
on False Positive[In spam detection, we want all our genuine emails to be predicted 
properly] 

4. F1 score metric is used for an imbalanced dataset. 

Metrics Formula 



 

Metrics [Image by Author] 

What is the threshold level? How to set the 

threshold level? 

Threshold Level 

The logistic regression model predicts the outcome in terms of probability. But, we want to 

make a prediction of 0 or 1. This can be done by setting a threshold value. 

If the threshold value is set as 0.5 means, the predicted probability greater than 0.5 will be 

converted to 1 and the remaining values as 0. 

ROC Curve 

ROC curve is the trade-off between FPR and TPR or (1-Specificity vs Sensitivity) at all 

classification threshold levels. 

FPR → Fraction of negative labels misclassified. 

TPR →Fraction of positive labels correctly classified 

If FPR=TPR=0 means the model predicts all instances as the negative class. 

If FPR=TPR=1 means model predicts all instances as the positive class 

If TPR=1, FPR=0 means the model predicts all data points correctly. (ideal model) 



Example: I have calculated all metrics from actual y and predicted probability at all 

threshold levels. 

 

Actual y and predicted probability 

 

All Metrics calculated for all threshold levels (0–1) 

Let’s plot ROC-Curve [FPR vs TPR] at all threshold levels. 



 

ROC Curve 

Interpretation of ROC curve 

From the above ROC curve, we can choose the best threshold level. At FPR =0 and TPR 

=0.75, is the best threshold level for the above ROC curve.  

AUC tends to be higher for that point and also FPR is zero. 

 

AUC — Area under the curve is the area covered by the ROC curve. AUC range from 0–1. 

For any random classifier, AUC =0.5. So AUC score for good models should be between 0.5 

and 1. 

If TPR=1, FPR=0 means the model predicts all data points correctly. (ideal model). In this 

case, AUC is 1. 



 

AUC=1 [Image by Author] 

Why ROC curve is used? 

1. To compare the performance of different models. AUC is calculated from the ROC curve and 
the model which has a higher AUC performs better. 

2. To select the best threshold for the model. 

Key Takeaways 

1. To interpret the model coefficient we use the equation 

 

2. To calculate ŷ, we use the equation 

 

3. Exponential model coefficient gives the odds ratio 

 

 

 

 

 



MNIST 
 

The MNIST database of handwritten digits, available from this page, has a training set of 

60,000 examples, and a test set of 10,000 examples. It is a subset of a larger set available 

from NIST. The digits have been size-normalized and centered in a fixed-size image.  

It is a good database for people who want to try learning techniques and pattern recognition 

methods on real-world data while spending minimal efforts on preprocessing and formatting.  

The MNIST database was constructed from NIST's Special Database 3 and Special Database 

1 which contain binary images of handwritten digits. NIST originally designated SD-3 as 

their training set and SD-1 as their test set. However, SD-3 is much cleaner and easier to 

recognize than SD-1. The reason for this can be found on the fact that SD-3 was collected 

among Census Bureau employees, while SD-1 was collected among high-school students. 

Drawing sensible conclusions from learning experiments requires that the result be 

independent of the choice of training set and test among the complete set of samples. 

Therefore it was necessary to build a new database by mixing NIST's datasets.  

The MNIST training set is composed of 30,000 patterns from SD-3 and 30,000 patterns from 

SD-1. Our test set was composed of 5,000 patterns from SD-3 and 5,000 patterns from SD-1. 

The 60,000 pattern training set contained examples from approximately 250 writers. We 

made sure that the sets of writers of the training set and test set were disjoint.  

 

What is Binary Classification? 

In machine learning, binary classification is a supervised learning algorithm that categorizes 

new observations into one of two classes. 

The following are a few binary classification applications, where the 0 and 1 columns are two 

possible classes for each observation: 

Application Observation 0 1 

Medical Diagnosis Patient Healthy Diseased 

Email Analysis Email Not Spam Spam 

Financial Data Analysis Transaction Not Fraud Fraud 

Marketing Website visitor Won't Buy Will Buy 

Image Classification Image Hotdog Not Hotdog 



Quick example 

In a medical diagnosis, a binary classifier for a specific disease could take a patient's 

symptoms as input features and predict whether the patient is healthy or has the disease. The 

possible outcomes of the diagnosis are positive and negative. 

Evaluation of binary classifiers 

If the model successfully predicts the patients as positive, this case is called True Positive 

(TP). If the model successfully predicts patients as negative, this is called True Negative 

(TN). The binary classifier may misdiagnose some patients as well. If a diseased patient is 

classified as healthy by a negative test result, this error is called False Negative (FN). 

Similarly, If a healthy patient is classified as diseased by a positive test result, this error is 

called False Positive(FP). 

We can evaluate a binary classifier based on the following parameters: 

 True Positive (TP): The patient is diseased and the model predicts "diseased" 
 False Positive (FP): The patient is healthy but the model predicts "diseased" 
 True Negative (TN): The patient is healthy and the model predicts "healthy" 
 False Negative (FN): The patient is diseased and the model predicts "healthy" 

After obtaining these values, we can compute the accuracy score of the binary classifier as 

follows:  

The following is a confusion matrix, which represents the above parameters: 

 

In machine learning, many methods utilize binary classification. The most common are: 

 Support Vector Machines 
 Naive Bayes 
 Nearest Neighbor 
 Decision Trees 
 Logistic Regression 
 Neural Networks 

The following Python example will demonstrate using binary classification in a logistic 

regression problem. 



A Python example for binary classification 

For our data, we will use the breast cancer dataset from scikit-learn. This dataset contains 

tumor observations and corresponding labels for whether the tumor was malignant or benign. 

First, we'll import a few libraries and then load the data. When loading the data, we'll specify 

as_frame=True so we can work with pandas objects (see our pandas tutorial for an 

introduction). 

import matplotlib.pyplot as plt 

from sklearn.datasets import load_breast_cancer 

 

dataset = load_breast_cancer(as_frame=True) 
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The dataset contains a DataFrame for the observation data and a Series for the target data. 

Let's see what the first few rows of observations look like: 

dataset['data'].head() 

Out: 
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5 rows × 30 columns 

The output shows five observations with a column for each feature we'll use to predict 

malignancy. 

Now, for the targets: 

dataset['target'].head() 

Out: 

0    0 

1    0 

2    0 

3    0 

4    0 

Name: target, dtype: int32 
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The targets for the first five observations are all zero, meaning the tumors are benign. Here's 

how many malignant and benign tumors are in our dataset: 

dataset['target'].value_counts() 

Out: 

1    357 

0    212 

Name: target, dtype: int64 
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So we have 357 malignant tumors, denoted as 1, and 212 benign, denoted as 0. So, we have a 

binary classification problem. 

To perform binary classification using logistic regression with sklearn, we must accomplish 

the following steps. 

Step 1: Define explanatory and target variables 

We'll store the rows of observations in a variable X and the corresponding class of those 

observations (0 or 1) in a variable y. 

X = dataset['data'] 

y = dataset['target'] 
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Step 2: Split the dataset into training and testing sets 

We use 75% of data for training and 25% for testing. Setting random_state=0 will ensure 

your results are the same as ours. 

from sklearn.model_selection import train_test_split 

 

X_train, X_test, y_train, y_test = train_test_split(X, y , test_size=0.25, 

random_state=0) 
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Step 3: Normalize the data for numerical stability 

Note that we normalize after splitting the data. It's good practice to apply any data 

transformations to training and testing data separately to prevent data leakage. 

from sklearn.preprocessing import StandardScaler 

 

ss_train = StandardScaler() 

X_train = ss_train.fit_transform(X_train) 

 



ss_test = StandardScaler() 

X_test = ss_test.fit_transform(X_test) 
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Step 4: Fit a logistic regression model to the training data 

This step effectively trains the model to predict the targets from the data. 

Step 5: Make predictions on the testing data 

With the model trained, we now ask the model to predict targets based on the test data. 

predictions = model.predict(X_test) 
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Step 6: Calculate the accuracy score by comparing the actual values and predicted 

values. 

We can now calculate how well the model performed by comparing the model's predictions 

to the true target values, which we reserved in the y_test variable. 

First, we'll calculate the confusion matrix to get the necessary parameters: 

from sklearn.metrics import confusion_matrix 

 

cm = confusion_matrix(y_test, predictions) 

 

TN, FP, FN, TP = confusion_matrix(y_test, predictions).ravel() 

 

print('True Positive(TP)  = ', TP) 

print('False Positive(FP) = ', FP) 

print('True Negative(TN)  = ', TN) 

print('False Negative(FN) = ', FN) 

Out: 

True Positive(TP)  =  86 

False Positive(FP) =  2 

True Negative(TN)  =  51 

False Negative(FN) =  4 
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With these values, we can now calculate an accuracy score: 

accuracy =  (TP + TN) / (TP + FP + TN + FN) 

 

print('Accuracy of the binary classifier = {:0.3f}'.format(accuracy)) 

Out: 

Accuracy of the binary classifier = 0.958 

Cross Validation and Performance Measures  

Deciding what cross validation and performance measures should be used while using a 

particular machine learning technique is very important. After training our model on the 

dataset, we can’t say for sure that the model will perform well on the data which it hasn’t 

seen before. The process of deciding whether the numerical results quantifying hypothesised 

relationships between variables, are acceptable as descriptions of the data, is known as 

validation. Based on the performance on unseen data, we can say whether model is overfitted, 

underfitted or well generalized. 

Cross Validation 

Cross validation is a technique which is used to evaluate the machine learning model by 

training it on the subset of the available data and then evaluating them on the remaining input 

data. On a simple note, we keep a portion of data aside and then train the model on the 

remaining data. And then we test and evaluate the performance of model on portion of data 

that was kept aside. 

Types of Cross Validation Techniques 

1. Holdout Method: The holdout method is the simple type of cross validation where the data 
set is divided into two sets, called the training set and the testing set. The model is fitted and 
trained using the training set only. Then the model is asked to predict the output values for 
the data in the testing set and it has never seen this data before. The model is evaluated 
using the appropriate performance measure such as mean absolute test set error. 
Advantage — It is preferable to the residual method and takes less time to compute. 
However, its evaluation can have a high variance. The evaluation depends entirely on which 
data points are in the training set and the test set, and thus the evaluation will be different 
depending on the division made. 



 

2. K-Fold Cross Validation Method: It is a modification in the holdout method. The dataset 

is divided into k subsets and the value of k shouldn’t be too small or too large, ideally we 

choose 5 to 10 depending on the data size. The higher value of k leads to less biased model 

whereas the lower value of K is similar to the holdout approach. Then we train the model 

using the k-1 folds and validate and test the model on the remaining kth fold. Note down the 

errors. This process is repeated until every K-fold serve as the test set. Then the average of 

the recorded scores is taken which is the performance metric for the model. 

 

Advantage — It doesn’t matter how the data gets divided. Every data point gets to be in a test 

set exactly once, and gets to be in a training set k-1 times. The variance of the resulting 

estimate is reduced as k is increased. 

Disadvantage — The training algorithm has to be rerun from scratch k times, which means it 

takes k times as much computation to make an evaluation. 

3. Leave-one-out cross validation is K-fold cross validation taken to its logical extreme, 

with K equal to N, the number of data points in the set. That means that N separate times, the 

model is trained on all the data except for one point and a prediction is made for that point. 

As before, the average error is computed and used to evaluate the model. The evaluation 

given by leave-one-out cross validation error (LOO-XVE) is good, but at first pass it seems 

very expensive to compute. 



 

Performance Measures 

Classification Accuracy 

It is the ratio of number of correct predictions to the total number of input samples. 

 

It works well only if there are equal number of samples belonging to each class. For example, 

if there are 95% samples of class A and 5% samples of class B in our training set. Then the 

model can easily get 95% training accuracy by simply predicting every training sample 

belonging to class A. When the same model is tested on a test set with 55% samples of class 

A and 45% samples of class B, then the test accuracy would drop down to 55%. 

Logarithmic Loss 

Logarithmic Loss penalises the false classifications and it works well for multi-class 

classification. The classifier must assign probability to each class for all the samples. If there 

are N samples belonging to M classes, then the Log Loss is calculated as below : 

 

where y_ij indicates whether sample i belongs to class j or not and p_ij indicates the 

probability of sample i belonging to class j 

Log Loss has no upper bound and it exists on the range [0, ∞). Log Loss nearer to 0 indicates 

higher accuracy, whereas if the Log Loss is away from 0 then it indicates lower accuracy. 



Confusion Matrix 

Confusion Matrix gives us a matrix as output and describes the complete performance of the 

model. 

There are 4 important terms : 

 True Positives : The cases in which we predicted YES and the actual output was also YES. 
 True Negatives : The cases in which we predicted NO and the actual output was NO. 
 False Positives : The cases in which we predicted YES and the actual output was NO. 
 False Negatives : The cases in which we predicted NO and the actual output was YES. 

Accuracy for the matrix can be calculated by taking average of the values lying across the 

main diagonal i.e 

 

Area Under Curve 

Area Under Curve(AUC) is one of the most widely used metrics for evaluation. It is used for 

binary classification problem. AUC of a classifier is equal to the probability that the classifier 

will rank a randomly chosen positive example higher than a randomly chosen negative 

example. Before defining AUC, let us understand two basic terms : 

 True Positive Rate (Sensitivity) : True Positive Rate is calculated by TP/ (FN+TP). True 
Positive Rate is the proportion of positive data points that are correctly considered as 
positive, with respect to all positive data points. It has values in the range [0, 1]. 

 False Positive Rate (Specificity) : False Positive Rate is calculate by FP / (FP+TN) which 
means that it is the proportion of negative data points that are mistakenly considered as 
positive, with respect to all negative data points. It has values in the range [0, 1]. 

AUC is the area under the curve of plot False Positive Rate vs True Positive Rate at different 

points in [0, 1]. 



 

AUC also has a range of [0, 1] and greater the value, the better is the performance of our 

model. 

F1 Score 

F1 Score is the harmonic mean(H.M.) between precision and recall. The range is [0, 1]. It 

depicts how precise the classifier is i.e. how many instances it classifies correctly and that it 

didn’t miss a significant number of instances. The greater the F1 Score, the better is the 

performance of the model. 

 

 Precision : It is the number of correct positive results divided by the number of positive 
results predicted by the classifier. 

 Recall : It is the number of correct positive results divided by the number of all samples that 
should have been identified as positive. 

Mean Absolute Error 

It is the average of the difference between the original values and the predicted values. It 

doesn’t gives us any idea of the direction of the error i.e. whether the model is under 

predicting or over predicting the data. 

Mean Squared Error 

Mean Squared Error(MSE) is quite similar to Mean Absolute Error with the difference that 

MSE takes average of the square of the difference between the original values and the 

predicted values. 



 

Advantage — It is easier to compute the gradient, whereas MAE needs complicated linear 

programming tools to compute the gradient. 

Predicting Probabilities 

In a classification problem, we may decide to predict the class values directly. 

Alternately, it can be more flexible to predict the probabilities for each class instead. The 

reason for this is to provide the capability to choose and even calibrate the threshold for how 

to interpret the predicted probabilities. 

For example, a default might be to use a threshold of 0.5, meaning that a probability in [0.0, 

0.49] is a negative outcome (0) and a probability in [0.5, 1.0] is a positive outcome (1). 

This threshold can be adjusted to tune the behavior of the model for a specific problem. An 

example would be to reduce more of one or another type of error. 

When making a prediction for a binary or two-class classification problem, there are two 

types of errors that we could make. 

 False Positive. Predict an event when there was no event. 
 False Negative. Predict no event when in fact there was an event. 

By predicting probabilities and calibrating a threshold, a balance of these two concerns can 

be chosen by the operator of the model. 

For example, in a smog prediction system, we may be far more concerned with having low 

false negatives than low false positives. A false negative would mean not warning about a 

smog day when in fact it is a high smog day, leading to health issues in the public that are 

unable to take precautions. A false positive means the public would take precautionary 

measures when they didn’t need to. 

A common way to compare models that predict probabilities for two-class problems is to use 

a ROC curve. 

What Are ROC Curves? 

A useful tool when predicting the probability of a binary outcome is the Receiver Operating 

Characteristic curve, or ROC curve. 

It is a plot of the false positive rate (x-axis) versus the true positive rate (y-axis) for a number 

of different candidate threshold values between 0.0 and 1.0. Put another way, it plots the false 

alarm rate versus the hit rate. 



The true positive rate is calculated as the number of true positives divided by the sum of the 

number of true positives and the number of false negatives. It describes how good the model 

is at predicting the positive class when the actual outcome is positive. 

True Positive Rate = True Positives / (True Positives + False Negatives) 

The true positive rate is also referred to as sensitivity. 

Sensitivity = True Positives / (True Positives + False Negatives) 

The false positive rate is calculated as the number of false positives divided by the sum of the 

number of false positives and the number of true negatives. 

It is also called the false alarm rate as it summarizes how often a positive class is predicted 

when the actual outcome is negative. 

False Positive Rate = False Positives / (False Positives + True Negatives) 

The false positive rate is also referred to as the inverted specificity where specificity is the 

total number of true negatives divided by the sum of the number of true negatives and false 

positives. 

Specificity = True Negatives / (True Negatives + False Positives) 

Where: 

False Positive Rate = 1 - Specificity 

The ROC curve is a useful tool for a few reasons: 

 The curves of different models can be compared directly in general or for different 
thresholds. 

 The area under the curve (AUC) can be used as a summary of the model skill. 

The shape of the curve contains a lot of information, including what we might care about 

most for a problem, the expected false positive rate, and the false negative rate. 

To make this clear: 

 Smaller values on the x-axis of the plot indicate lower false positives and higher true 
negatives. 

 Larger values on the y-axis of the plot indicate higher true positives and lower false 
negatives. 



If you are confused, remember, when we predict a binary outcome, it is either a correct 

prediction (true positive) or not (false positive). There is a tension between these options, the 

same with true negative and false negative. 

A skilful model will assign a higher probability to a randomly chosen real positive occurrence 

than a negative occurrence on average. This is what we mean when we say that the model has 

skill. Generally, skilful models are represented by curves that bow up to the top left of the 

plot. 

A no-skill classifier is one that cannot discriminate between the classes and would predict a 

random class or a constant class in all cases. A model with no skill is represented at the point 

(0.5, 0.5). A model with no skill at each threshold is represented by a diagonal line from the 

bottom left of the plot to the top right and has an AUC of 0.5. 

A model with perfect skill is represented at a point (0,1). A model with perfect skill is 

represented by a line that travels from the bottom left of the plot to the top left and then 

across the top to the top right. 

An operator may plot the ROC curve for the final model and choose a threshold that gives a 

desirable balance between the false positives and false negatives. 

ROC Curves and AUC in Python 

We can plot a ROC curve for a model in Python using the roc_curve() scikit-learn function. 

The function takes both the true outcomes (0,1) from the test set and the predicted 

probabilities for the 1 class. The function returns the false positive rates for each threshold, 

true positive rates for each threshold and thresholds. 

... 

# calculate roc curve 

fpr, tpr, thresholds = roc_curve(y, probs) 

The AUC for the ROC can be calculated using the roc_auc_score() function. 

Like the roc_curve() function, the AUC function takes both the true outcomes (0,1) from the 

test set and the predicted probabilities for the 1 class. It returns the AUC score between 0.0 

and 1.0 for no skill and perfect skill respectively. 

... 

# calculate AUC 

auc = roc_auc_score(y, probs) 

print('AUC: %.3f' % auc) 



A complete example of calculating the ROC curve and ROC AUC for a Logistic Regression 

model on a small test problem is listed below. 

# roc curve and auc 

from sklearn.datasets import make_classification 

from sklearn.linear_model import LogisticRegression 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import roc_curve 

from sklearn.metrics import roc_auc_score 

from matplotlib import pyplot 

# generate 2 class dataset 

X, y = make_classification(n_samples=1000, n_classes=2, random_state=1) 

# split into train/test sets 

trainX, testX, trainy, testy = train_test_split(X, y, test_size=0.5, random_state=2) 

# generate a no skill prediction (majority class) 

ns_probs = [0 for _ in range(len(testy))] 

# fit a model 

model = LogisticRegression(solver='lbfgs') 

model.fit(trainX, trainy) 

# predict probabilities 

lr_probs = model.predict_proba(testX) 

# keep probabilities for the positive outcome only 

lr_probs = lr_probs[:, 1] 

# calculate scores 

ns_auc = roc_auc_score(testy, ns_probs) 

lr_auc = roc_auc_score(testy, lr_probs) 

# summarize scores 

print('No Skill: ROC AUC=%.3f' % (ns_auc)) 



print('Logistic: ROC AUC=%.3f' % (lr_auc)) 

# calculate roc curves 

ns_fpr, ns_tpr, _ = roc_curve(testy, ns_probs) 

lr_fpr, lr_tpr, _ = roc_curve(testy, lr_probs) 

# plot the roc curve for the model 

pyplot.plot(ns_fpr, ns_tpr, linestyle='--', label='No Skill') 

pyplot.plot(lr_fpr, lr_tpr, marker='.', label='Logistic') 

# axis labels 

pyplot.xlabel('False Positive Rate') 

pyplot.ylabel('True Positive Rate') 

# show the legend 

pyplot.legend() 

# show the plot 

pyplot.show() 

Running the example prints the ROC AUC for the logistic regression model and the no skill 

classifier that only predicts 0 for all examples. 

No Skill: ROC AUC=0.500 

Logistic: ROC AUC=0.903 

A plot of the ROC curve for the model is also created showing that the model has skill. 

Note: Your results may vary given the stochastic nature of the algorithm or evaluation 

procedure, or differences in numerical precision. Consider running the example a few times 

and compare the average outcome. 



 

ROC Curve Plot for a No Skill Classifier and a Logistic Regression Model 

What Are Precision-Recall Curves? 

There are many ways to evaluate the skill of a prediction model. 

An approach in the related field of information retrieval (finding documents based on 

queries) measures precision and recall. 

These measures are also useful in applied machine learning for evaluating binary 

classification models. 

Precision is a ratio of the number of true positives divided by the sum of the true positives 

and false positives. It describes how good a model is at predicting the positive class. 

Precision is referred to as the positive predictive value. 

Positive Predictive Power = True Positives / (True Positives + False Positives) 

or 

Precision = True Positives / (True Positives + False Positives) 



Recall is calculated as the ratio of the number of true positives divided by the sum of the true 

positives and the false negatives. Recall is the same as sensitivity. 

Recall = True Positives / (True Positives + False Negatives) 

or 

Sensitivity = True Positives / (True Positives + False Negatives) 

Recall == Sensitivity 

Reviewing both precision and recall is useful in cases where there is an imbalance in the 

observations between the two classes. Specifically, there are many examples of no event 

(class 0) and only a few examples of an event (class 1). 

The reason for this is that typically the large number of class 0 examples means we are less 

interested in the skill of the model at predicting class 0 correctly, e.g. high true negatives. 

Key to the calculation of precision and recall is that the calculations do not make use of the 

true negatives. It is only concerned with the correct prediction of the minority class, class 1. 

A precision-recall curve is a plot of the precision (y-axis) and the recall (x-axis) for different 

thresholds, much like the ROC curve. 

A no-skill classifier is one that cannot discriminate between the classes and would predict a 

random class or a constant class in all cases. The no-skill line changes based on the 

distribution of the positive to negative classes. It is a horizontal line with the value of the ratio 

of positive cases in the dataset. For a balanced dataset, this is 0.5. 

While the baseline is fixed with ROC, the baseline of [precision-recall curve] is determined 

by the ratio of positives (P) and negatives (N) as y = P / (P + N). For instance, we have y = 

0.5 for a balanced class distribution … 

— The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating 

Binary Classifiers on Imbalanced Datasets, 2015. 

A model with perfect skill is depicted as a point at (1,1). A skilful model is represented by a 

curve that bows towards (1,1) above the flat line of no skill. 

There are also composite scores that attempt to summarize the precision and recall; two 

examples include: 

 F-Measure or F1 score: that calculates the harmonic mean of the precision and recall 
(harmonic mean because the precision and recall are rates). 

 Area Under Curve: like the AUC, summarizes the integral or an approximation of the area 
under the precision-recall curve. 



In terms of model selection, F-Measure summarizes model skill for a specific probability 

threshold (e.g. 0.5), whereas the area under curve summarize the skill of a model across 

thresholds, like ROC AUC. 

This makes precision-recall and a plot of precision vs. recall and summary measures useful 

tools for binary classification problems that have an imbalance in the observations for each 

class. 

Precision-Recall Curves in Python 

Precision and recall can be calculated in scikit-learn. 

The precision and recall can be calculated for thresholds using the precision_recall_curve() 

function that takes the true output values and the probabilities for the positive class as input 

and returns the precision, recall and threshold values. 

... 

# calculate precision-recall curve 

precision, recall, thresholds = precision_recall_curve(testy, probs) 

The F-Measure can be calculated by calling the f1_score() function that takes the true class 

values and the predicted class values as arguments. 

... 

# calculate F1 score 

f1 = f1_score(testy, yhat) 

The area under the precision-recall curve can be approximated by calling the auc() function 

and passing it the recall (x) and precision (y) values calculated for each threshold. 

... 

# calculate precision-recall AUC 

auc = auc(recall, precision) 

When plotting precision and recall for each threshold as a curve, it is important that recall is 

provided as the x-axis and precision is provided as the y-axis. 

The complete example of calculating precision-recall curves for a Logistic Regression model 

is listed below. 



# precision-recall curve and f1 

from sklearn.datasets import make_classification 

from sklearn.linear_model import LogisticRegression 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import precision_recall_curve 

from sklearn.metrics import f1_score 

from sklearn.metrics import auc 

from matplotlib import pyplot 

# generate 2 class dataset 

X, y = make_classification(n_samples=1000, n_classes=2, random_state=1) 

# split into train/test sets 

trainX, testX, trainy, testy = train_test_split(X, y, test_size=0.5, random_state=2) 

# fit a model 

model = LogisticRegression(solver='lbfgs') 

model.fit(trainX, trainy) 

# predict probabilities 

lr_probs = model.predict_proba(testX) 

# keep probabilities for the positive outcome only 

lr_probs = lr_probs[:, 1] 

# predict class values 

yhat = model.predict(testX) 

lr_precision, lr_recall, _ = precision_recall_curve(testy, lr_probs) 

lr_f1, lr_auc = f1_score(testy, yhat), auc(lr_recall, lr_precision) 

# summarize scores 

print('Logistic: f1=%.3f auc=%.3f' % (lr_f1, lr_auc)) 

# plot the precision-recall curves 

no_skill = len(testy[testy==1]) / len(testy) 



pyplot.plot([0, 1], [no_skill, no_skill], linestyle='--', label='No Skill') 

pyplot.plot(lr_recall, lr_precision, marker='.', label='Logistic') 

# axis labels 

pyplot.xlabel('Recall') 

pyplot.ylabel('Precision') 

# show the legend 

pyplot.legend() 

# show the plot 

pyplot.show() 

Running the example first prints the F1, area under curve (AUC) for the logistic regression 

model. 

Note: Your results may vary given the stochastic nature of the algorithm or evaluation 

procedure, or differences in numerical precision. Consider running the example a few times 

and compare the average outcome. 

 

Logistic: f1=0.841 auc=0.898 

 

The precision-recall curve plot is then created showing the precision/recall for each threshold for a 

logistic regression model (orange) compared to a no skill model (blue). 

 



Precision-Recall Plot for a No Skill Classifier and a Logistic Regression Model 

When to Use ROC vs. Precision-Recall Curves? 

Generally, the use of ROC curves and precision-recall curves are as follows: 

 ROC curves should be used when there are roughly equal numbers of observations for each 
class. 

 Precision-Recall curves should be used when there is a moderate to large class imbalance. 

The reason for this recommendation is that ROC curves present an optimistic picture of the 

model on datasets with a class imbalance. 

 

Multi-Class Classification 

Multi-class classification refers to those classification tasks that have more than two class 

labels. 

Examples include: 

 Face classification. 
 Plant species classification. 
 Optical character recognition. 

Unlike binary classification, multi-class classification does not have the notion of normal and 

abnormal outcomes. Instead, examples are classified as belonging to one among a range of 

known classes. 

The number of class labels may be very large on some problems. For example, a model may 

predict a photo as belonging to one among thousands or tens of thousands of faces in a face 

recognition system. 

Problems that involve predicting a sequence of words, such as text translation models, may 

also be considered a special type of multi-class classification. Each word in the sequence of 

words to be predicted involves a multi-class classification where the size of the vocabulary 

defines the number of possible classes that may be predicted and could be tens or hundreds of 

thousands of words in size. 

It is common to model a multi-class classification task with a model that predicts a 

Multinoulli probability distribution for each example. 

The Multinoulli distribution is a discrete probability distribution that covers a case where an 

event will have a categorical outcome, e.g. K in {1, 2, 3, …, K}. For classification, this means 

that the model predicts the probability of an example belonging to each class label. 

Many algorithms used for binary classification can be used for multi-class classification. 



Popular algorithms that can be used for multi-class classification include: 

 k-Nearest Neighbors. 
 Decision Trees. 
 Naive Bayes. 
 Random Forest. 
 Gradient Boosting. 

Algorithms that are designed for binary classification can be adapted for use for multi-class 

problems. 

This involves using a strategy of fitting multiple binary classification models for each class 

vs. all other classes (called one-vs-rest) or one model for each pair of classes (called one-vs-

one). 

 One-vs-Rest: Fit one binary classification model for each class vs. all other classes. 
 One-vs-One: Fit one binary classification model for each pair of classes. 

Binary classification algorithms that can use these strategies for multi-class classification 

include: 

 Logistic Regression. 
 Support Vector Machine. 

Next, let’s take a closer look at a dataset to develop an intuition for multi-class classification 

problems. 

Multi-Label Classification 

Multi-label classification refers to those classification tasks that have two or more class 

labels, where one or more class labels may be predicted for each example. 

Consider the example of photo classification, where a given photo may have multiple objects 

in the scene and a model may predict the presence of multiple known objects in the photo, 

such as ―bicycle,‖ ―apple,‖ ―person,‖ etc. 

This is unlike binary classification and multi-class classification, where a single class label is 

predicted for each example. 

It is common to model multi-label classification tasks with a model that predicts multiple 

outputs, with each output taking predicted as a Bernoulli probability distribution. This is 

essentially a model that makes multiple binary classification predictions for each example. 

Classification algorithms used for binary or multi-class classification cannot be used directly 

for multi-label classification. Specialized versions of standard classification algorithms can 

be used, so-called multi-label versions of the algorithms, including: 

 Multi-label Decision Trees 
 Multi-label Random Forests 
 Multi-label Gradient Boosting 



Another approach is to use a separate classification algorithm to predict the labels for each 

class. 

Next, let’s take a closer look at a dataset to develop an intuition for multi-label classification 

problems. 

We can use the make_multilabel_classification() function to generate a synthetic multi-label 

classification dataset. 

 

In multi-output classification, the goal is to learn a classification rule whose output is a set, or 

vector, of labels i.e. y1 belong to Y1, y2 belonging to Y2, yn belonging to Yn and v, the 

vector is composed of y1, y2, y3, …yn. 

Multi-label classification involves classifying instances into several labels that share 

semantics, for example, the problem of classifying songs according to their genre — it is 

possible to classify a dance as either ballet or traditional, but also possible to classify a dance 

as both (i.e. ‖ballet traditional‖). Here, pop and rock share semantics: they both relate to the 

songs’ genre, and are thus two different values of the same label. There is also no a priori 

knowledge regarding the size of the output — it is very possible that a song cannot be 

classified as any previously known genre, or that it is best classified as several different 

genres. 

The problem of multi-output classification is effectively the opposite of multi-label 

classification — the output values do not share semantics, but the number of outputs is 

known a priori. 

In a classification problem where the goal is to simultaneously predict temperature (low, 

medium, or high) and pressure (low, medium, or high) inside a pressure cooker — in this 

case, the model is expected to output exactly two values, one value for the temperature label 

and another for the pressure label. 

The machine learning task of solving a multi-output problem thus involves building a 

predictive model that simultaneously outputs a set of (two or more) labels that measure 

different concepts — essentially two or more separate (although related) classification 

problems are solved concurrently within the same model. 

A multi-output classification is multitask-classification — which illustrates the fact that a 

multi-output classification problem is effectively equivalent to multiple simultaneous (multi-

tasked) single-label classification problems. 

Multi-label problems can be transformed into multi-output problems, the opposite is not 

necessarily true. 

We all know how to predict one target column given multiple feature columns, let’s see how to 

predict two columns at once. 

Multi- output : Yes, there will be multiple outputs (2 or more) for a single feature set( a set 

of independent values) 



Many times beginners get confused between MultiClass and MultiLabel. 

Multi-Class : Each data point can only belong to one label. For example: A fraud detection 

model can only classify one feature set into either ―fraud‖ or ―non fraud‖. It can’t be both or 

there’s no middle ground. 

Multi-Label: One data point can belong to one or more labels. For example: when building 

movie genre prediction model, the model can classify one movie into more than one label, 

since a movie can be action, thriller ,can be both action and thriller. 

 
 

 

GRADIENT DESCENT INTRODUCTION: 

 

Gradient descent is, with no doubt, the heart and soul of most Machine Learning (ML) 

algorithms. I definitely believe that you should take the time to understanding it. Because 

once you do, for starters, you will better comprehend how most ML algorithms work. 

Besides, understanding basic concepts is key for developing intuition about more complicated 

subjects. 

To understand Gradient Descent at its heart, let’s have a running example. The task is an old 

one in the field — predict house prices using some historical data as prior knowledge. 

But our goal here is to talk about Gradient Descent. To do that, let’s make the example 

simple enough so we can concentrate on the good parts. 

But, Before we go ahead, you can get the code here. 

Basic Concepts 

Suppose you want to climb a very tall hill. Your goal is to get to the top of the hill the fastest. 

You look around and you realize you have more than one path to start off. Since you are on 

the bottom, all of these options seem to take you somewhat closer to the summit. 

But you want to get to the top in the fastest way possible. So, how can you do that? How can 

you take a step that takes you as close as possible to the summit? 

Up to this point, it is not clear how to take this step. That is where the Gradient can help you. 



As stated in this Khan Academy video, the gradient captures all the partial derivatives of a 

multi-variable function. 

Let’s go step by step and see how it works. 

In simpler terms, the derivative is the rate of change or the slope of a function at a given 

point. 

Take the f(x) = x² function as an example. The derivative of f(x), is another function f’(x) that 

computes the slope of f(x) at a given point x. In this situation, for x = 2, the slope of f(x) = x² 

is 2x or 2*2 = 4. 

 

The slope of f(x)=x² at different points. 

Simply putting, the derivative points to the direction of steepest ascent. And the good thing 

is, the gradient is exactly the same thing. With one exception, the Gradient is a vector-valued 

function that stores partial derivatives. In other words, the gradient is a vector, and each of its 

components is a partial derivative with respect to one specific variable. 

Take the function, f(x, y) = 2x² + y² as another example. 

Here, f(x, y) is a multi-variable function. Its gradient is a vector, containing the partial 

derivatives of f(x, y). The first with respect to x, and the second with respect to y. 

If we calculate the partials of f(x,y) we get. 



 

So the gradient is the following vector: 

 

Note that each component indicates what is the direction of steepest ascent for each of the 

function’ variables. Put it differently, the gradient points to the direction where the function 

increases the most. 

Back to the hill climbing example, the gradient points you to the direction that takes you to 

the peak of the mountain the fastest. In other words, the gradient points to the higher altitudes 

of a surface. 

In the same way, if we get a function with 4 variables, we would get a gradient vector with 4 

partial derivatives. Generally, an n-variable function results in an n-dimensional gradient 

vector. 

 

For Gradient descent, however, we do not want to maximize f as fast as we can, we want to 

minimize it. 

But let’s define our task first and things will look much cleaner. 

Predicting House Prices 

We are going to solve the problem of predicting house prices based on historical data. To 

build a Machine Learning model, we often need at least 3 things. A problem T, a performance 

measure P, and an experience E, from where our model will learn patterns from. 

To solve task T, we are going to use a simple Linear Regression Model. This model will learn 

from experience E, and after training, it will be able to generalize its knowledge to unseen 

data. 



The Linear Model is an excellent model to learn. It’s the foundation of many other ML 

algorithms like Neural Networks and Support Vector Machines. 

For this example, the experience E, is the HOUSES Dataset. The HOUSES dataset contains a 

collection of recent real estate listings in San Luis Obispo County and around it. 

The collection contains 781 data records and it is available for download in CSV format here. 

Among the 8 available features, for simplicity, we are going to focus on only two of them: 

the Size, and Price. For each of the 781 records, the Size, in square feet, will be our input 

features, and the Price our target values. 

Besides, to check if our model is properly learning from experience E, we need a mechanism 

to measure its performance. To do that, we take the mean of squared errors (MSE) as our 

performance measure. 

 

MSE has been a standard for linear regression for many years. But in theory, any other error 

measure like the Absolute Error would work. Some of the benefits of MSE is that it penalizes 

larger errors more than the Absolute error. 

Now that we have formalized our learning algorithm, let’s dive into the code. 

First we load the data in python using Pandas, and separate the Size and Prices features. 

After, we normalize the data to prevent some of the features to out value some of the others. 

Also, Gradient Descent is known for converging much faster with normalized data than 

otherwise. 

Bellow, you can see the distribution of house prices by its size in square meters. 



 

Distribution of house prices by Size. The data is normalized to the [0,1] interval. 

A Linear Regression model works by drawing a line on the data. As such, our model is 

represented by a simple line equation. 

 

Line equation. m and b are the slope and the y-intercept respectively. The x variable is the 

placeholder for the input values. 

For a Linear Model, the two free parameters are the slope m and the y-intercept y. These two 

variables are the knobs that we are going to change in order to find the best line equation. 

Iteratively, we are going to perform slight changes to them, so it can follow the direction of 

steepest descent on the error surface. After each iteration, these weight changes will refine 

our model so that it can represent the trends of the dataset. 

Before going further, remember that for Gradient Descent, we want to take the direction 

opposite to the gradient. 

You can think of Gradient Descent as a ball rolling down on a valley. we want it to sit in the 

deepest place of the mountains, however, it is easy to see that things can go wrong. 



 

In analogy, we can think of Gradient Descent as being a ball rolling down on a valley. The deepest 

valley is the optimal global minimum and that is the place we aim for. 

Depending on where the ball starts rolling, it may rest in the bottom of a valley. But not in the 

lowest one. This is called a local minimum and in the context of our model, the valley is the 

error surface. 

Note that, in the analogy, not all local minima are bad. Some of them are actually almost as 

low (good) as the lowest (global) one. In fact, for high dimensional error surfaces, it is most 

common to settle in one of these (not so bad) local minima. 

Similarly, the way we initialize our model weights may lead it to rest in a local minimum. To 

avoid that, we initialize the two weight vectors with values from a random normal 

distribution with zero mean and low variance. 

At each iteration, we are going to take a random subset of our dataset and linearly combine it 

with our weights. This subset is called a mini-batch. After the linear combination, we feed the 

resulting vector in the MSE function to calculate the current error. 

With this error signal, we can calculate the partial derivatives of the error and get the 

Gradient. 

First, we get the partial derivative with respect to W0. 

 



Partial with respect to W0 

Second, we do the same, but taking W1 as the actor. 

 

Partial with respect to W1 

With the two partials, we have the gradient vector: 

 

The Gradient 

Where Err is the MSE error function. 

Having that, our next step is to update the weight vectors W0 and W1, using the gradients, to 

minimize the error. 

We want to update the weights so they can push the error down in the next iteration. We need 

to make them follow the opposite direction of each respective gradient signal. To do that, we 

are going to take small steps of size η in that direction. 

The step size η is the learning rate and it controls the rate of learning. Empirically, a good 

starting point is 0.1. In the end, the update step rule is set as: 

 

In code, the complete model looks like this. Look at the minus sign in front of both gradients 

DW0 and DW1. This guarantees that we will take steps in the opposite direction to the 

gradient. 

After updating the weights, we repeat the process with another random mini-batch. And that 

is it. 

Step by step, each weight update causes a small shift in the line towards its best 

representation. In the end, when the error variance is small enough we can stop learning. 



 

Linear model conversion over time. The first weight updates cause the line to rapidly reach an ideal 

representation. 

This version of Gradient Descent is called Mini-Batch Stochastic Gradient Descent. In this 

version, we use a small subset of the training data to calculate the gradient. Each mini-batch 

gradient offers an approximation to the optimal direction. Even though the gradients do not 

point to the exact direction, in practice it converges to very good solutions. 

 

Error signal by epoch. Note that after decreasing the error signal very fast the model slows down and 

converges. 

If you look close at the error/episode graph, you notice that in the beginning, learning occurs 

at a faster pace. 



After some epochs, however, it slows down and plateaus. This happens because, in the 

beginning, the gradient vectors that point to the steepest descent are long in magnitude. As 

result, the two weight variables W0 and W1 suffer more drastic changes. 

However, as they get closer to the summit of the error surface, the gradient slowly gets 

smaller and smaller, which causes very small changes to the weights. 

 



UNIT-IV 

 

Unsupervised Learning: clustering algorithms, k-means/k-medoid, Fuzzy K-means, hierarchical 

clustering, top- down, bottom-up: single-linkage, multiple linkage, dimensionality reduction, 

principal component analysis. 

 

Unsupervised learning 

Unsupervised learning is a type of machine learning where the algorithm is given data without 

explicit instructions on what to do with it. The system tries to learn the patterns and relationships 

within the data on its own. There are two main types of unsupervised learning: clustering and 

dimensionality reduction. 

 

1. Clustering: 

 

 K-Means Clustering: This algorithm partitions data into 'k' clusters based on 

similarity. For example, in customer segmentation, you can use K-means to group 

customers with similar purchasing behavior. 

 Hierarchical Clustering: It creates a tree of clusters, where the root is a single 

cluster containing all data points, and the leaves are individual data points. This 

can be used in taxonomy or gene expression analysis. 

 

2. Dimensionality Reduction: 

 

 Principal Component Analysis (PCA): PCA is used to reduce the number of 

features in a dataset while retaining its essential information. It's often applied in 

image compression or feature extraction for machine learning models. 

 t-Distributed Stochastic Neighbor Embedding (t-SNE): t-SNE is used for 

visualizing high-dimensional data in two or three dimensions. It's useful for 

exploring the structure of data and finding patterns. For instance, visualizing 

similarities between words in natural language processing. 

 

3. Association Rule Learning: 

 

 Apriori Algorithm: This algorithm is used to discover associations between 

different items in a dataset. For example, in retail, it can identify relationships like 

"Customers who buy product A are likely to buy product B." 
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4. Generative Models: 

 Generative Adversarial Networks (GANs): GANs consist of a generator and a 
discriminator that are trained together. GANs can generate new data instances that 
resemble the training data. They are used in image and video generation tasks. 

5. Autoencoders: 
 Variational Autoencoders (VAE): VAEs are a type of autoencoder that learns a 

probabilistic mapping between the data space and a latent space. They are used 
for generating new data points and can be applied to image and text generation. 

Unsupervised learning is particularly valuable when you have a large amount of unlabeled data 
and want to explore the underlying structure or relationships within it. It is widely used in 
various domains, including pattern recognition, anomaly detection, and feature learning. 
 

Clustering algorithms 
Clustering algorithms in unsupervised learning aim to group similar data points together into 
clusters or segments based on certain criteria. The goal is to discover hidden patterns or 
structures within the data. There are various clustering algorithms, each with its own approach 
and characteristics. Here are a few commonly used clustering algorithms: 

1. K-Means Clustering: 
 Objective: Partition the data into 'k' clusters based on similarity. 
 Process: It starts by randomly selecting 'k' centroids (cluster centers) and assigns 

each data point to the nearest centroid. Then, it recalculates the centroids based on 
the mean of the data points in each cluster. This process iterates until 
convergence. 

 Example: Customer segmentation in marketing based on purchasing behavior. 
2. Hierarchical Clustering: 

 Objective: Create a tree-like structure (dendrogram) of clusters. 
 Process: It begins with each data point as a separate cluster and merges the 

closest clusters iteratively until all points belong to a single cluster. The resulting 
dendrogram can be cut at different levels to obtain clusters of varying sizes. 

 Example: Taxonomy in biology or organizational hierarchy. 
3. DBSCAN (Density-Based Spatial Clustering of Applications with Noise): 

 Objective: Identify clusters based on the density of data points. 
 Process: It defines clusters as dense regions separated by areas of lower point 

density. It classifies points as core points, border points, or outliers (noise) based 
on their density and proximity to other points. 

 Example: Anomaly detection in network traffic where unusual patterns represent 
potential security threats. 

4. Mean Shift: 
 Objective: Discover modes or peaks of high-density regions. 
 Process: It iteratively shifts the center of a kernel until it converges to a high-

density region. The algorithm is adaptive and does not require specifying the 
number of clusters beforehand. 

 Example: Image segmentation where pixels with similar colors form clusters. 
 



3 
 

 
5. Agglomerative Clustering: 

 Objective: Build clusters by successively merging or agglomerating data points. 
 Process: It starts with each data point as a singleton cluster and merges the closest 

pairs iteratively until a stopping criterion is met. The result is a dendrogram that 
can be cut to form clusters. 

 Example: Social network analysis to identify communities within a network. 
6. Gaussian Mixture Model (GMM): 

 Objective: Model the data as a mixture of several Gaussian distributions. 
 Process: It assumes that the data is generated by a mixture of several Gaussian 

distributions. The algorithm estimates the parameters of these distributions, 
including means and covariances, to identify clusters. 

 Example: Speech and handwriting recognition where multiple patterns contribute 
to the observed data. 

 

K-Means algorithm 
The K-Means algorithm is a popular unsupervised machine learning algorithm used for 
clustering data. The goal of K-Means is to partition a dataset into 'k' clusters, where each data 
point belongs to the cluster with the nearest mean. Here's a detailed explanation of the K-Means 
algorithm: 
Key Concepts: 

 Unsupervised Learning: It works with unlabeled data, finding patterns on its own. 
 Clustering: It groups similar data points together into distinct clusters. 
 Centroids: Each cluster has a central point (centroid), representing the "average" of data 

points within it. 
 Distance Metric: It measures how close data points are to each other, usually using 

Euclidean distance. 
Algorithm Steps: 
Step 1: Initialization 

 Input: Dataset with 'n' data points and the desired number of clusters 'k'. 
 Process: 

 Randomly select 'k' data points from the dataset as initial centroids. 
Step 2: Assignment 

 Input: Initial centroids. 
 Process: 

 For each data point in the dataset, calculate the Euclidean distance to each 
centroid. 

 Assign the data point to the cluster associated with the nearest centroid. 
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Step 3: Update 

 Input: Assigned clusters. 
 Process: 

 Recalculate the centroids of each cluster by computing the mean of all data points 
in that cluster. 

       
Step 4: Convergence Check 

 Input: Updated centroids. 
 Process: 

 Repeat the assignment and update steps iteratively until convergence. 
 Convergence occurs when the centroids no longer change significantly or after a 

fixed number of iterations. 
Step 5: Result 

 Output: Final clusters. 
 Process: 

 Once convergence is reached, the algorithm stops, and each data point is assigned 
to a specific cluster. 

 
 
 
Pseudo code: 
1. Randomly initialize k centroids: c_1, c_2, ..., c_k 
2. Repeat until convergence: 
   a. For each data point x_i, assign it to the cluster with the closest centroid:  
         j = argmin_k ||x_i - c_k||^2 
   b. Update centroids: c_k = (1/|cluster k|) * Σ x_i for all i in cluster k 
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Program 1: Implement a program to cluster a dataset using K-means clustering. 
 
Example 1: iris flowers 
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Output: 

 
 
Example 2: Pima Indians Diabetes Database 
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Output: 
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Example 3: Breast Cancer Wisconsin (Diagnostic) dataset 
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Output: 
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Program 2: Implement a program to calculate the elbow method for K-means clustering. 
 

 
 
 
Output: 
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Program 3: Implement a program to calculate the silhouette coefficient for K-means 
clustering. 
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Output: 

 
 
 
Example: 
Imagine a dataset of customer spending habits. K-means could group customers into clusters 
based on similar spending patterns, helping businesses tailor marketing strategies. 
Key Points: 

 Simple and Efficient: K-means is popular due to its simplicity and efficiency. 
 Sensitivity to Initialization: It can get stuck in local optima, so multiple runs with 

different initializations are often recommended. 
 Non-Spherical Clusters and Outliers: It struggles with non-spherical cluster shapes or 

outliers. 
 Choosing k: Selecting the optimal number of clusters is often challenging. 

Applications: 
 Customer Segmentation: Identifying customer groups with similar characteristics. 
 Image Compression: Grouping similar pixels for compression. 
 Anomaly Detection: Finding unusual data points that don't fit into clusters. 
 Document Clustering: Grouping text documents based on content similarity. 
 Gene Expression Analysis: Identifying patterns in gene expression data. 
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Hierarchical clustering 
Hierarchical clustering is a method used in unsupervised machine learning to group similar data 
points into clusters in a hierarchical manner. It builds a tree-like structure, called a dendrogram, 
to represent the relationships between clusters. The two main approaches to hierarchical 
clustering are agglomerative (bottom-up) and divisive (top-down). 
 
Agglomerative Hierarchical Clustering: 

1. Start: Treat each data point as a singleton cluster, and compute the pairwise distances 
between all clusters. 

2. Merge: Find the two closest clusters and merge them into a new cluster. Update the 
distance matrix. 

3. Repeat: Repeat step 2 until only a single cluster remains, forming a dendrogram. 
4. Dendrogram Interpretation: The dendrogram can be cut at different heights to obtain 

clusters at different levels of granularity. 
Divisive Hierarchical Clustering: 

1. Start: Treat the entire dataset as a single cluster. 
2. Split: Identify the cluster with the maximum dissimilarity and split it into two clusters. 
3. Repeat: Repeat step 2 until each data point forms a singleton cluster, creating a 

dendrogram. 
4. Dendrogram Interpretation: The dendrogram can be cut at different heights to obtain 

clusters at different levels of granularity 
 
Example: 
Let's consider a small dataset for illustrative purposes: 
Data Points: A, B, C, D, E 
Distances:  
- Dist(A, B) = 2 
- Dist(A, C) = 3 
- Dist(A, D) = 4 
- Dist(A, E) = 5 
- Dist(B, C) = 1 
- Dist(B, D) = 6 
- Dist(B, E) = 7 
- Dist(C, D) = 8 
- Dist(C, E) = 9 
- Dist(D, E) = 10 
 
Agglomerative Hierarchical Clustering: 

1. Step 1: Treat each data point as a singleton cluster: {A}, {B}, {C}, {D}, {E}. 
2. Step 2: Merge the closest clusters: {A, B}, {C}, {D}, {E} (Dist(A, B) = 2). 
3. Step 3: Merge the closest clusters: {A, B}, {C, D}, {E} (Dist(B, C) = 1). 
4. Step 4: Merge the closest clusters: {A, B, C, D}, {E} (Dist(C, D) = 8). 
5. Step 5: Merge the closest clusters: {A, B, C, D, E}. 
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Dendrogram Interpretation: 
The dendrogram would show the hierarchy of merging clusters at different heights, and we can 
choose the height at which we want to cut the dendrogram to obtain clusters. 
Divisive Hierarchical Clustering: 

1. Step 1: Treat the entire dataset as a single cluster: {A, B, C, D, E}. 
2. Step 2: Split the cluster into two: {A, B, C}, {D, E}. 
3. Step 3: Split the cluster further: {A, B}, {C}, {D, E}. 
4. Step 4: Split the cluster further: {A}, {B}, {C}, {D, E}. 
5. Step 5: Split the cluster further: {A}, {B}, {C}, {D}, {E}. 

Dendrogram Interpretation: 
Similar to agglomerative clustering, the dendrogram in divisive clustering represents the 
hierarchy of splitting clusters. 
In practice, the choice of distance metric and linkage criteria (how to measure the distance 
between clusters) influences the results of hierarchical clustering. 
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Top-Down (Divisive) and Bottom-Up (Agglomerative) Hierarchical 
Clustering: 
In the context of unsupervised learning algorithms, specifically hierarchical clustering, the terms 
"top-down" and "bottom-up" refer to two different approaches for building the hierarchical 
structure, and "single-linkage" and "multiple linkage" refer to different strategies for measuring 
the distance between clusters. 
Top-Down (Divisive) and Bottom-Up (Agglomerative) Hierarchical Clustering: 

1. Top-Down (Divisive) Hierarchical Clustering: 
 This approach starts with the entire dataset as one cluster and recursively splits it 

into smaller clusters until each data point forms a singleton cluster. 
 At each step, the algorithm selects a cluster and divides it into two. 

2. Bottom-Up (Agglomerative) Hierarchical Clustering: 
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 This approach starts with each data point as a singleton cluster and merges the 
closest clusters until only one cluster remains. 

 At each step, the algorithm merges the two closest clusters. 

Single-Linkage and Multiple-Linkage: 
1. Single-Linkage (Nearest-Neighbor Linkage): 

 In single-linkage hierarchical clustering, the distance between two clusters is 
defined as the shortest distance between any two points in the two clusters. 

 The linkage criterion is based on the minimum distance between points in 
different clusters. 

2. Complete-Linkage (Farthest-Neighbor Linkage): 
 In complete-linkage hierarchical clustering, the distance between two clusters is 

defined as the longest distance between any two points in the two clusters. 
 The linkage criterion is based on the maximum distance between points in 

different clusters. 
3. Average-Linkage: 

 In average-linkage hierarchical clustering, the distance between two clusters is 
defined as the average distance between all pairs of points in the two clusters. 

 The linkage criterion is based on the average distance between points in different 
clusters. 

4. Ward's Method: 
 Ward's method is another linkage criterion that minimizes the variance within 

clusters when merging them. 
 It tends to produce more balanced and compact clusters. 
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  
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Dimensionality reduction 
Dimensionality reduction is a technique used in machine learning and data analysis to reduce the 
number of input features or variables while preserving the important information in the data. 
This is often done to mitigate the curse of dimensionality, improve computational efficiency, and 
avoid over fitting. Here are some popular algorithms for dimensionality reduction: 
Key Algorithms: 
1. Principal Component Analysis (PCA) (1901): 

 Identifies orthogonal directions of maximum variance in the data. 
 Projects data onto these principal components, creating lower-dimensional 

representations. 
 Widely used due to simplicity and effectiveness. 

2. Linear Discriminant Analysis (LDA) (1936): 
 Supervised method that considers class labels during projection. 
 Maximizes class separability in the reduced space. 
 Often used for classification tasks. 

3. Factor Analysis (1904): 
 Assumes underlying latent variables explain observed correlations between features. 
 Models these latent factors to reduce dimensionality. 
 Commonly used in social sciences and psychometrics. 

4. t-Distributed Stochastic Neighbor Embedding (t-SNE) (2008): 
 Non-linear technique for visualizing high-dimensional data in 2D or 3D. 
 Preserves local structure while revealing global patterns. 
 Popular for visual exploration of complex datasets. 

5. Singular Value Decomposition (SVD) (1873): 
 Matrix factorization technique with various applications, including dimensionality 

reduction. 
 Decomposes a matrix into three matrices: U, Σ, and V*. 
 Truncated SVD approximates the original matrix with fewer dimensions. 

6. Auto encoders (1980s - 1990s): 
 Neural networks trained to reconstruct their input data. 
 Learn compressed representations in the hidden layers. 
 Flexible for non-linear dimensionality reduction. 

7. Independent Component Analysis (ICA) (1990s): 
 Finds independent components within the data. 
 Useful for signal separation and blind source separation. 

8. Random Projection (2006): 
 Projects data onto a lower-dimensional subspace using random matrices. 
 Often computationally efficient and preserves pairwise distances well. 

9. Uniform Manifold Approximation and Projection (UMAP) (2018): 
 Non-linear technique preserving global structure while revealing local patterns. 
 Often used for visualization and clustering, often outperforming t-SNE. 

Choosing the Right Algorithm: 
 Data characteristics: linear vs. non-linear relationships, noise levels, etc. 
 Purpose: visualization, compression, classification, feature selection, etc. 
 Interpretability requirements: some algorithms yield more interpretable results. 
 Computational efficiency: consider algorithm speed and scalability. 
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Principal Component Analysis (PCA) 
Principal Component Analysis (PCA) is a dimensionality reduction technique widely 
used in machine learning and data analysis. Its primary goal is to transform high-
dimensional data into a lower-dimensional representation while retaining as much of the 
original variability as possible. PCA achieves this by identifying the directions (principal 
components) in the data along which the variance is maximized. 
Key Concepts: 

1. Covariance Matrix: 
 PCA starts by computing the covariance matrix of the input data. The covariance 

matrix captures the relationships between different features, indicating how they 
vary together. 

2. Eigenvalues and Eigenvectors: 
 PCA then calculates the eigenvalues and corresponding eigenvectors of the 

covariance matrix. Eigenvectors represent the directions of maximum variance, 
and eigenvalues indicate the magnitude of variance along those directions. 

3. Principal Components: 
 The eigenvectors become the principal components of the data. These are the new 

coordinate axes in the transformed space. The first principal component 
corresponds to the direction of maximum variance, the second to the second-
highest variance, and so on. 

4. Explained Variance: 
 Each eigenvalue represents the amount of variance captured by its corresponding 

principal component. The total variance of the data remains constant, but PCA 
allows for prioritizing the most important dimensions. 

5. Dimensionality Reduction: 
 The principal components are ranked by their corresponding eigenvalues. By 

selecting the top-k principal components (where k is the desired reduced 
dimensionality), you can create a lower-dimensional representation of the data. 

Steps in PCA: 
1. Standardization: 

 Standardize the input features (subtract mean and divide by the standard 
deviation) to ensure that each feature contributes equally to the analysis. 

2. Covariance Matrix Calculation: 
 Calculate the covariance matrix of the standardized data. 

3. Eigen decomposition: 
 Perform Eigen decomposition on the covariance matrix to obtain eigenvalues and 

eigenvectors. 
4. Select Principal Components: 

 Rank the eigenvalues in descending order and choose the top-k eigenvectors to 
form the principal components matrix. 

5. Data Transformation: 
 Project the original data onto the selected principal components to obtain the 

lower-dimensional representation. 
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Output: 
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Program 1: Implement a program to perform principal component analysis on a dataset. 
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Output: 
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Output: 

 
 
Program 2: Implement a program to calculate the covariance matrix for a dataset. 
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Program 3: Implement a program to calculate the singular value decomposition for a 
dataset. 
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Hierarchical clustering: 
Program 1: Implement a program to perform hierarchical clustering on a dataset. 
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Program 2: Implement a program to calculate the agglomerative clustering algorithm for a 
hierarchical clustering. 
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Program 3: Implement a program to calculate the divisive clustering algorithm for a hierarchical 
clustering. 
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Output: 
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Anomaly detection: 

Program 1: Implement a program to detect anomalies in a dataset using the isolation forest 
algorithm. 

 

Output: 
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Program 2: Implement a program to detect anomalies in a dataset using the one-class support 
vector machine. 

 

Output: 
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Program 3: Implement a program to evaluate the performance of an anomaly detection 
algorithm. 
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Case Study: Customer Segmentation for E-commerce using Unsupervised 
Learning 
Introduction: 
In this case study, we will explore how unsupervised learning techniques, specifically clustering 
algorithms, can be applied to perform customer segmentation for an e-commerce business. 
Customer segmentation helps businesses understand the diverse needs and behaviors of their 
customers, enabling personalized marketing strategies, product recommendations, and improved 
customer experiences. 
Objective: 
The goal is to identify distinct groups of customers based on their purchasing behavior, 
preferences, and engagement with the e-commerce platform. This segmentation can provide 
valuable insights for targeted marketing campaigns, product recommendations, and tailored 
services. 
Dataset: 
Assume we have a dataset with the following features: 

1. Customer ID: Unique identifier for each customer. 
2. Purchase History: Information about the products purchased, including frequency, 

recency, and monetary value. 
3. Website Engagement: Data related to customer engagement, such as time spent on the 

website, number of visits, etc. 
4. Demographic Information: Age, gender, location, etc. 

Steps: 
1. Data Preprocessing: 

 Handle missing values, if any. 
 Standardize or normalize numerical features. 
 Encode categorical variables. 

2. Exploratory Data Analysis (EDA): 
 Understand the distribution of each feature. 
 Explore correlations between features. 
 Identify outliers and decide whether to handle or remove them. 

3. Feature Engineering: 
 Create relevant features for analysis. 
 Combine or transform features if needed. 

4. Unsupervised Learning (Clustering): 
 Apply clustering algorithms such as K-means, hierarchical clustering, or 

DBSCAN. 
 Choose the appropriate number of clusters based on the data and business 

understanding. 
 Analyze and interpret the results of clustering. 

5. Customer Segmentation: 
 Identify and label the segments created by the clustering algorithm. 
 Analyze the characteristics of each segment. 
 Understand the differences and similarities between segments. 

6. Business Insights: 
 Derive actionable insights for marketing, product development, and customer 

engagement strategies based on the identified segments. 
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 Tailor marketing campaigns to address the specific needs of each segment. 
 Optimize product recommendations and pricing strategies. 

7. Evaluation: 
 Evaluate the effectiveness of customer segmentation by monitoring key 

performance indicators (KPIs) over time. 
 Refine the segmentation approach if necessary. 

Tools and Technologies: 
 Python for data preprocessing, analysis, and visualization. 
 Scikit-learn or other machine learning libraries for clustering algorithms. 
 Matplotlib and Seaborn for data visualization. 

Conclusion: 
Customer segmentation using unsupervised learning provides businesses with a powerful tool to 
enhance customer understanding and optimize marketing strategies. By leveraging the insights 
gained from segmentation, e-commerce businesses can foster customer loyalty, improve 
customer satisfaction, and drive overall business success. 
 



Fuzzy K-means clustering 

Fuzzy K-means clustering is an extension of the traditional K-means algorithm that allows 

data points to belong to multiple clusters with varying degrees of membership. Unlike 

traditional K-means, where each data point is assigned exclusively to one cluster, Fuzzy K-

means assigns a membership value between 0 and 1 to each data point for each cluster, 

indicating the degree to which it belongs to that cluster. A membership value of 1 signifies 

complete membership, while 0 indicates no membership. This "fuzziness" allows for a more 

nuanced representation of data, especially when clusters are overlapping or ill-defined.    

The working of Fuzzy K-means involves an iterative process similar to traditional K-means. 

First, the algorithm randomly initializes 'K' cluster centers (centroids). Then, it calculates the 

membership values of each data point to each cluster based on its distance to the cluster 

centers. The membership value is inversely proportional to the distance; the closer a data 

point is to a cluster center, the higher its membership value to that cluster. Next, the cluster 

centers are updated based on the weighted average of all data points, where the weights are 

the membership values. This process of calculating membership values and updating cluster 

centers is repeated until a convergence criterion is met, such as a maximum number of 

iterations or a sufficiently small change in the cluster centers or membership values.   

 

Flowchart of Fuzzy K-means clustering 



  

The flowchart describes the Fuzzy K-means (or Fuzzy C-means) clustering algorithm. Let's 

break down each step: 

1. Start: The beginning of the algorithm. 

2. Initialization: 
o Running state dataset X: This represents the input data, a set of data points 

that you want to cluster. 

o Number of clusters k: This is a user-defined parameter specifying how many 

clusters the data should be divided into. 

o itor = 1: This initializes an iteration counter. 

3. Select k samples in X...as the initial cluster centers CC: This is the initial selection 

of cluster centers (centroids). The text mentions selecting samples with "large μ-

distance" and "disjoint neighborhood." This suggests a method to choose initial 

centers that are well-separated, which can improve the algorithm's performance. "μ-

distance" likely refers to a specific distance metric used in this implementation. A 

common simpler approach is to randomly select k data points as initial centers. 

4. itor > Max_itor?: This is a check for the maximum number of iterations. Max_itor 

is a predefined limit. If the current iteration count (itor) exceeds this limit, the 

algorithm terminates (YES branch). This prevents the algorithm from running 

indefinitely if it doesn't converge. 

5. NO (itor <= Max_itor): If the maximum number of iterations hasn't been reached, 

the algorithm proceeds with the clustering process. 

6. Add each sample to corresponding cluster according to its fuzzy membership 

degree, generate the cluster set C: This is the core of Fuzzy K-means. Unlike K-

means, where each data point is assigned to only one cluster, here, each data point is 

assigned a membership degree to each cluster. This degree is a value between 0 and 1, 

indicating the probability or degree to which the data point belongs to that cluster. 

The set of all these membership values for all data points and clusters forms the fuzzy 

partition. The cluster set C is generated based on these membership values. 

7. Update the cluster centers; Itor++: The cluster centers (centroids) are recalculated 

based on the current membership degrees. Each cluster center is updated as the 

weighted average of all data points, where the weights are the membership degrees of 

those points to the cluster. The iteration counter is then incremented. 

8. Do all k cluster centers remain the same?: This is a convergence check. If the 

cluster centers haven't changed significantly from the previous iteration, it means the 

algorithm has converged, and further iterations are unlikely to improve the clustering. 

9. YES (Cluster centers remain the same): If the cluster centers haven't changed, the 

algorithm terminates and returns the set of clusters C. 

10. NO (Cluster centers have changed): If the cluster centers have changed, the 

algorithm loops back to step 6 (adding samples based on fuzzy membership), 

continuing the iterative process. 

11. Return set of cluster C: The algorithm outputs the final cluster assignments 

(represented by the membership degrees). 

12. End: The end of the algorithm. 

 

 



Key Differences from K-means Highlighted in the Flowchart: 

 Fuzzy Membership: The crucial difference is in step 6. K-means would assign each 

point to the nearest cluster. Fuzzy K-means assigns a degree of membership to each 

cluster. 

 Cluster Center Update: The cluster center update (step 7) is also different. In K-

means, it's the average of the points assigned to that cluster. In Fuzzy K-means, it's a 

weighted average based on the membership degrees. 

This flowchart provides a good visual representation of the Fuzzy K-means algorithm's 

iterative process and highlights its key distinctions from the traditional K-means algorithm. 

The key difference between Fuzzy K-means and traditional K-means lies in the cluster 

assignment and the objective function. In traditional K-means, cluster assignment is hard: 

each data point is assigned to the nearest cluster center, resulting in distinct and non-

overlapping clusters. In contrast, Fuzzy K-means uses soft assignment: data points have 

membership values for all clusters, allowing for overlapping clusters and a more flexible 

representation of cluster boundaries. The objective function also differs. Traditional K-means 

aims to minimize the sum of squared distances between data points and their assigned cluster 

centers. Fuzzy K-means, on the other hand, minimizes the weighted sum of squared 

distances, where the weights are the membership values raised to a fuzziness parameter 

(usually denoted as 'm'). This fuzziness parameter controls the degree of fuzziness in the 

clustering; higher values of 'm' lead to more fuzzy clusters. This modified objective function 

allows Fuzzy K-means to handle situations where data points might reasonably belong to 

multiple clusters, a capability absent in traditional K-means.    

 

 

 

 
 

https://en.wikipedia.org/wiki/Fuzzy_clustering#:~:text=Fuzzy%20clustering%20(also%20referred%20to,to%20more%20than%20one%20cluster.
https://en.wikipedia.org/wiki/Fuzzy_clustering#:~:text=Fuzzy%20clustering%20(also%20referred%20to,to%20more%20than%20one%20cluster.


UNIT–V 

Tree based classification: Decision tress, SVM, Random Forest, Accuracy measure and 

performance metrics. 

Ensemble methods: XG Boost, ADA Boost, Bagging, Boosting. 

 

 

                                                         Tree based classification 

Tree-based classification models are a type of supervised machine learning algorithm that uses a series of 

conditional statements to partition training data into subsets. Each successive split adds some complexity to 

the model, which can be used to make predictions. 

Types of Tree based models are: 

1.Decision Tree 

2.SVM(Support Vector Machine) 

3.Random Forest 

1.Decision Tree: 

o Decision Tree is a Supervised learning technique that can be used for both classification 

and Regression problems, but mostly it is preferred for solving Classification problems. It 

is a tree-structured classifier, where internal nodes represent the features of a dataset, 

branches represent the decision rules and each leaf node represents the outcome. 

o In a Decision tree, there are two nodes, which are the Decision Node and Leaf 

Node. Decision nodes are used to make any decision and have multiple branches, whereas 

Leaf nodes are the output of those decisions and do not contain any further branches. 

o The decisions or the test are performed on the basis of features of the given dataset. 

o It is a graphical representation for getting all the possible solutions to a 

problem/decision based on given conditions. 

o It is called a decision tree because, similar to a tree, it starts with the root node, which 

expands on further branches and constructs a tree-like structure. 

o In order to build a tree, we use the CART algorithm, which stands for Classification and 

Regression Tree algorithm. 

o A decision tree simply asks a question, and based on the answer (Yes/No), it further split 

the tree into subtrees. 

o Below diagram explains the general structure of a decision tree: 



 

Why use Decision Trees? 

There are various algorithms in Machine learning, so choosing the best algorithm for the given 

dataset and problem is the main point to remember while creating a machine learning model. 

Below are the two reasons for using the Decision tree: 

o Decision Trees usually mimic human thinking ability while making a decision, so it is easy 

to understand. 

o The logic behind the decision tree can be easily understood because it shows a tree-like 

structure. 

Decision Tree Terminologies 

Root Node: Root node is from where the decision tree starts. It represents the entire dataset, 

which further gets divided into two or more homogeneous sets. 

Leaf Node: Leaf nodes are the final output node, and the tree cannot be segregated further 

after getting a leaf node. 

Splitting: Splitting is the process of dividing the decision node/root node into sub-nodes 

according to the given conditions. 

Branch/Sub Tree: A tree formed by splitting the tree. 

Pruning: Pruning is the process of removing the unwanted branches from the tree. 

Parent/Child node: The root node of the tree is called the parent node, and other nodes are 

called the child nodes. 

How does the Decision Tree algorithm Work? 



In a decision tree, for predicting the class of the given dataset, the algorithm starts from the root 

node of the tree. This algorithm compares the values of root attribute with the record (real dataset) 

attribute and, based on the comparison, follows the branch and jumps to the next node. 

For the next node, the algorithm again compares the attribute value with the other sub-nodes and 

move further. It continues the process until it reaches the leaf node of the tree. The complete 

process can be better understood using the below algorithm: 

x 

o Step-1: Begin the tree with the root node, says S, which contains the complete dataset. 

o Step-2: Find the best attribute in the dataset using Attribute Selection Measure (ASM). 

o Step-3: Divide the S into subsets that contains possible values for the best attributes. 

o Step-4: Generate the decision tree node, which contains the best attribute. 

o Step-5: Recursively make new decision trees using the subsets of the dataset created in 

step -3. Continue this process until a stage is reached where you cannot further classify the 

nodes and called the final node as a leaf node. 

Example: Suppose there is a candidate who has a job offer and wants to decide whether he should 

accept the offer or Not. So, to solve this problem, the decision tree starts with the root node 

(Salary attribute by ASM). The root node splits further into the next decision node (distance from 

the office) and one leaf node based on the corresponding labels. The next decision node further 

gets split into one decision node (Cab facility) and one leaf node. Finally, the decision node splits 

into two leaf nodes (Accepted offers and Declined offer). Consider the below diagram: 

 



Attribute Selection Measures 

While implementing a Decision tree, the main issue arises that how to select the best attribute for 

the root node and for sub-nodes. So, to solve such problems there is a technique which is called 

as Attribute selection measure or ASM. By this measurement, we can easily select the best 

attribute for the nodes of the tree. There are two popular techniques for ASM, which are: 

o Information Gain 

o Gini Index 

1. Information Gain: 

o Information gain is the measurement of changes in entropy after the segmentation of a 

dataset based on an attribute. 

o It calculates how much information a feature provides us about a class. 

o According to the value of information gain, we split the node and build the decision tree. 

o A decision tree algorithm always tries to maximize the value of information gain, and a 

node/attribute having the highest information gain is split first. It can be calculated using 

the below formula: 

 

 

 

 

1. Information Gain= Entropy(S)- [(Weighted Avg) *Entropy(each feature)   

Entropy: Entropy is a metric to measure the impurity in a given attribute. It specifies randomness 

in data. Entropy can be calculated as: 

Entropy(s)= -P(yes)log2 P(yes)- P(no) log2 P(no) 

Where, 

o S= Total number of samples 

o P(yes)= probability of yes 

o P(no)= probability of no 

2. Gini Index: 

o Gini index is a measure of impurity or purity used while creating a decision tree in the 

CART(Classification and Regression Tree) algorithm. 



o An attribute with the low Gini index should be preferred as compared to the high Gini 

index. 

o It only creates binary splits, and the CART algorithm uses the Gini index to create binary 

splits. 

o Gini index can be calculated using the below formula: 

Gini Index= 1- ∑jPj
2
 

Pruning: Getting an Optimal Decision tree 

Pruning is a process of deleting the unnecessary nodes from a tree in order to get the optimal 

decision tree. 

A too-large tree increases the risk of overfitting, and a small tree may not capture all the important 

features of the dataset. Therefore, a technique that decreases the size of the learning tree without 

reducing accuracy is known as Pruning. There are mainly two types of tree pruning technology 

used: 

o Cost Complexity Pruning 

o Reduced Error Pruning. 

Advantages of the Decision Tree 

o It is simple to understand as it follows the same process which a human follow while 

making any decision in real-life. 

o It can be very useful for solving decision-related problems. 

o It helps to think about all the possible outcomes for a problem. 

o There is less requirement of data cleaning compared to other algorithms. 

Disadvantages of the Decision Tree 

o The decision tree contains lots of layers, which makes it complex. 

o It may have an overfitting issue, which can be resolved using the Random Forest 

algorithm. 

o For more class labels, the computational complexity of the decision tree may increase. 

Python Implementation of Decision Tree 

Now we will implement the Decision tree using Python. For this, we will use the dataset 

"user_data.csv," which we have used in previous classification models. By using the same 

dataset, we can compare the Decision tree classifier with other classification models such as KNN 



SVM, 

LogisticRegression, 

etc. 

Steps will also remain the same, which are given below: 

o Data Pre-processing step 

o Fitting a Decision-Tree algorithm to the Training set 

o Predicting the test result 

o Test accuracy of the result(Creation of Confusion matrix) 

o Visualizing the test set result. 

1. Data Pre-Processing Step: 

Below is the code for the pre-processing step: 

 

 

 

 

1. # importing libraries   

2. import numpy as nm   

3. import matplotlib.pyplot as mtp   

4. import pandas as pd   

5.    

6. #importing datasets   

7. data_set= pd.read_csv('user_data.csv')   

8.    

9. #Extracting Independent and dependent Variable   

10. x= data_set.iloc[:, [2,3]].values   

11. y= data_set.iloc[:, 4].values   

12.    

13. # Splitting the dataset into training and test set.   

14. from sklearn.model_selection import train_test_split   

15. x_train, x_test, y_train, y_test= train_test_split(x, y, test_size= 0.25, random_state=0)   

16.    

17. #feature Scaling   

18. from sklearn.preprocessing import StandardScaler     

19. st_x= StandardScaler()   

20. x_train= st_x.fit_transform(x_train)     



21. x_test= st_x.transform(x_test)     

In the above code, we have pre-processed the data. Where we have loaded the dataset, which is 

given as: 

 

2. Fitting a Decision-Tree algorithm to the Training set: 

Now we will fit the model to the training set. For this, we will import 

the DecisionTreeClassifier class from sklearn.tree library. Below is the code for it: 

 

 

 

 

1. #Fitting Decision Tree classifier to the training set   

2. From sklearn.tree import DecisionTreeClassifier   



3. classifier= DecisionTreeClassifier(criterion='entropy', random_state=0)   

4. classifier.fit(x_train, y_train)   

In the above code, we have created a classifier object, in which we have passed two main 

parameters; 

o "criterion='entropy': Criterion is used to measure the quality of split, which is calculated 

by information gain given by entropy. 

o random_state=0": For generating the random states. 

Below is the output for this: 

Out[8]:  

DecisionTreeClassifier(class_weight=None, criterion='entropy', max_depth=None, 

max_features=None, max_leaf_nodes=None, 

min_impurity_decrease=0.0, min_impurity_split=None, 

min_samples_leaf=1, min_samples_split=2, 

min_weight_fraction_leaf=0.0, presort=False, 

                       random_state=0, splitter='best') 

3. Predicting the test result: 

Now we will predict the test set result. We will create a new prediction vector y_pred. Below is 

the code for it: 

 

 

 

 

1. #Predicting the test set result   

2. y_pred= classifier.predict(x_test)   

Output: 

In the below output image, the predicted output and real test output are given. We can clearly see 

that there are some values in the prediction vector, which are different from the real vector values. 

These are prediction errors. 



 

4. Test accuracy of the result (Creation of Confusion matrix): 

In the above output, we have seen that there were some incorrect predictions, so if we want to 

know the number of correct and incorrect predictions, we need to use the confusion matrix. Below 

is the code for it: 

 

 

 

 

1. #Creating the Confusion matrix   

2. from sklearn.metrics import confusion_matrix   

3. cm= confusion_matrix(y_test, y_pred)   

Output: 



 

In the above output image, we can see the confusion matrix, which has 6+3= 9 incorrect 

predictions and62+29=91 correct predictions. Therefore, we can say that compared to other 

classification models, the Decision Tree classifier made a good prediction. 

5. Visualizing the training set result: 

Here we will visualize the training set result. To visualize the training set result we will plot a 

graph for the decision tree classifier. The classifier will predict yes or No for the users who have 

either Purchased or Not purchased the SUV car as we did in Logistic Regression. 

Below is the code for it: 

 

 

 

 

1. #Visulaizing the trianing set result   

2. from matplotlib.colors import ListedColormap   

3. x_set, y_set = x_train, y_train   

4. x1, x2 = nm.meshgrid(nm.arange(start = x_set[:, 0].min() -

 1, stop = x_set[:, 0].max() + 1, step  =0.01),   

5. nm.arange(start = x_set[:, 1].min() - 1, stop = x_set[:, 1].max() + 1, step = 0.01))   

6. mtp.contourf(x1, x2, classifier.predict(nm.array([x1.ravel(), x2.ravel()]).T).reshape(x1.shape),   

7. alpha = 0.75, cmap = ListedColormap(('purple','green' )))   

8. mtp.xlim(x1.min(), x1.max())   

9. mtp.ylim(x2.min(), x2.max())   

10. fori, j in enumerate(nm.unique(y_set)):   

11. mtp.scatter(x_set[y_set == j, 0], x_set[y_set == j, 1],   



12.         c = ListedColormap(('purple', 'green'))(i), label = j)   

13. mtp.title('Decision Tree Algorithm (Training set)')   

14. mtp.xlabel('Age')   

15. mtp.ylabel('Estimated Salary')   

16. mtp.legend()   

17. mtp.show()   

Output: 

 

The above output is completely different from the rest classification models. It has both vertical 

and horizontal lines that are splitting the dataset according to the age and estimated salary 

variable. 

As we can see, the tree is trying to capture each dataset, which is the case of overfitting. 

6. Visualizing the test set result: 

Visualization of test set result will be similar to the visualization of the training set except that the 

training set will be replaced with the test set. 

 

 

 

 

1. #Visulaizing the test set result   

2. from matplotlib.colors import ListedColormap   

3. x_set, y_set = x_test, y_test   

4. x1, x2 = nm.meshgrid(nm.arange(start = x_set[:, 0].min() -

 1, stop = x_set[:, 0].max() + 1, step  =0.01),   



5. nm.arange(start = x_set[:, 1].min() - 1, stop = x_set[:, 1].max() + 1, step = 0.01))   

6. mtp.contourf(x1, x2, classifier.predict(nm.array([x1.ravel(), x2.ravel()]).T).reshape(x1.shape),   

7. alpha = 0.75, cmap = ListedColormap(('purple','green' )))   

8. mtp.xlim(x1.min(), x1.max())   

9. mtp.ylim(x2.min(), x2.max())   

10. fori, j in enumerate(nm.unique(y_set)):   

11. mtp.scatter(x_set[y_set == j, 0], x_set[y_set == j, 1],   

12.         c = ListedColormap(('purple', 'green'))(i), label = j)   

13. mtp.title('Decision Tree Algorithm(Test set)')   

14. mtp.xlabel('Age')   

15. mtp.ylabel('Estimated Salary')   

16. mtp.legend()   

17. mtp.show()   

Output: 

 

As we can see in the above image that there are some green data points within the purple region 

and vice versa. So, these are the incorrect predictions which we have discussed in the confusion 

matrix. 

2.SVM(Support Vector Machine); 

Support Vector Machine or SVM is one of the most popular Supervised Learning algorithms, 

which is used for Classification as well as Regression problems. However, primarily, it is used for 

Classification problems in Machine Learning. 

The goal of the SVM algorithm is to create the best line or decision boundary that can segregate 

n-dimensional space into classes so that we can easily put the new data point in the correct 

category in the future. This best decision boundary is called a hyperplane. 



SVM chooses the extreme points/vectors that help in creating the hyperplane. These extreme 

cases are called as support vectors, and hence algorithm is termed as Support Vector Machine. 

Consider the below diagram in which there are two different categories that are classified using a 

decision boundary or hyperplane: 

 

Example: SVM can be understood with the example that we have used in the KNN classifier. 

Suppose we see a strange cat that also has some features of dogs, so if we want a model that can 

accurately identify whether it is a cat or dog, so such a model can be created by using the SVM 

algorithm. We will first train our model with lots of images of cats and dogs so that it can learn 

about different features of cats and dogs, and then we test it with this strange creature. So as 

support vector creates a decision boundary between these two data (cat and dog) and choose 

extreme cases (support vectors), it will see the extreme case of cat and dog. On the basis of the 

support vectors, it will classify it as a cat. Consider the below diagram: 
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SVM algorithm can be used for Face detection, image classification, text categorization, etc. 

Types of SVM 

SVM can be of two types: 

o Linear SVM: Linear SVM is used for linearly separable data, which means if a dataset 

can be classified into two classes by using a single straight line, then such data is termed as 

linearly separable data, and classifier is used called as Linear SVM classifier. 

o Non-linear SVM: Non-Linear SVM is used for non-linearly separated data, which means 

if a dataset cannot be classified by using a straight line, then such data is termed as non-

linear data and classifier used is called as Non-linear SVM classifier. 

Hyperplane and Support Vectors in the SVM algorithm: 

Hyperplane: There can be multiple lines/decision boundaries to segregate the classes in n-

dimensional space, but we need to find out the best decision boundary that helps to classify the 

data points. This best boundary is known as the hyperplane of SVM. 

The dimensions of the hyperplane depend on the features present in the dataset, which means if 

there are 2 features (as shown in image), then hyperplane will be a straight line. And if there are 3 

features, then hyperplane will be a 2-dimension plane. 

We always create a hyperplane that has a maximum margin, which means the maximum distance 

between the data points. 

Support Vectors: 



The data points or vectors that are the closest to the hyperplane and which affect the position of 

the hyperplane are termed as Support Vector. Since these vectors support the hyperplane, hence 

called a Support vector. 

How does SVM works? 

Linear SVM: 

The working of the SVM algorithm can be understood by using an example. Suppose we have a 

dataset that has two tags (green and blue), and the dataset has two features x1 and x2. We want a 

classifier that can classify the pair(x1, x2) of coordinates in either green or blue. Consider the 

below image: 

 

So as it is 2-d space so by just using a straight line, we can easily separate these two classes. But 

there can be multiple lines that can separate these classes. Consider the below image: 



 

Hence, the SVM algorithm helps to find the best line or decision boundary; this best boundary or 

region is called as a hyperplane. SVM algorithm finds the closest point of the lines from both the 

classes. These points are called support vectors. The distance between the vectors and the 

hyperplane is called as margin. And the goal of SVM is to maximize this margin. 

The hyperplane with maximum margin is called the optimal hyperplane. 

 



Non-Linear SVM: 

If data is linearly arranged, then we can separate it by using a straight line, but for non-linear data, 

we cannot draw a single straight line. Consider the below image: 

        

 

So to separate these data points, we need to add one more dimension. For linear data, we have 

used two dimensions x and y, so for non-linear data, we will add a third dimension z. It can be 

calculated as: 

z=x
2
 +y

2
 

By adding the third dimension, the sample space will become as below image: 



 

So now, SVM will divide the datasets into classes in the following way. Consider the below 

image: 

 

Since we are in 3-d Space, hence it is looking like a plane parallel to the x-axis. If we convert it in 

2d space with z=1, then it will become as: 



 

Hence we get a circumference of radius 1 in case of non-linear data. 

Python Implementation of Support Vector Machine 

Now we will implement the SVM algorithm using Python. Here we will use the same 

dataset user_data, which we have used in Logistic regression and KNN classification. 

o Data Pre-processing step 

Till the Data pre-processing step, the code will remain the same. Below is the code: 

 

 

 

 

1. #Data Pre-processing Step   

2. # importing libraries   

3. import numpy as nm   

4. import matplotlib.pyplot as mtp   

5. import pandas as pd   

6.    

7. #importing datasets   

8. data_set= pd.read_csv('user_data.csv')   

9.    



10. #Extracting Independent and dependent Variable   

11. x= data_set.iloc[:, [2,3]].values   

12. y= data_set.iloc[:, 4].values   

13.    

14. # Splitting the dataset into training and test set.   

15. from sklearn.model_selection import train_test_split   

16. x_train, x_test, y_train, y_test= train_test_split(x, y, test_size= 0.25, random_state=0)   

17. #feature Scaling   

18. from sklearn.preprocessing import StandardScaler     

19. st_x= StandardScaler()     

20. x_train= st_x.fit_transform(x_train)     

21. x_test= st_x.transform(x_test)        

After executing the above code, we will pre-process the data. The code will give the dataset as: 

 



The scaled output for the test set will be: 

 

Fitting the SVM classifier to the training set: 

Now the training set will be fitted to the SVM classifier. To create the SVM classifier, we will 

import SVC class from Sklearn.svm library. Below is the code for it: 

 

 

 

 

1. from sklearn.svm import SVC # "Support vector classifier"   

2. classifier = SVC(kernel='linear', random_state=0)   

3. classifier.fit(x_train, y_train)   

In the above code, we have used kernel='linear', as here we are creating SVM for linearly 

separable data. However, we can change it for non-linear data. And then we fitted the classifier to 

the training dataset(x_train, y_train) 



Output: 

Out[8]:  

SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, 

    decision_function_shape='ovr', degree=3, gamma='auto_deprecated', 

    kernel='linear', max_iter=-1, probability=False, random_state=0, 

    shrinking=True, tol=0.001, verbose=False) 

The model performance can be altered by changing the value of C(Regularization factor), 

gamma, and kernel. 

o Predicting the test set result: 

Now, we will predict the output for test set. For this, we will create a new vector y_pred. 

Below is the code for it: 

 

 

 

 

1. #Predicting the test set result   

2. y_pred= classifier.predict(x_test)   

After getting the y_pred vector, we can compare the result of y_pred and y_test to check the 

difference between the actual value and predicted value. 

Output: Below is the output for the prediction of the test set: 



 

o Creating the confusion matrix: 

Now we will see the performance of the SVM classifier that how many incorrect 

predictions are there as compared to the Logistic regression classifier. To create the 

confusion matrix, we need to import the confusion_matrix function of the sklearn library. 

After importing the function, we will call it using a new variable cm. The function takes 

two parameters, mainly y_true( the actual values) and y_pred (the targeted value return 

by the classifier). Below is the code for it: 

 

 

 

 

1. #Creating the Confusion matrix   

2. from sklearn.metrics import confusion_matrix   

3. cm= confusion_matrix(y_test, y_pred)   

Output: 



 

As we can see in the above output image, there are 66+24= 90 correct predictions and 8+2= 10 

correct predictions. Therefore we can say that our SVM model improved as compared to the 

Logistic regression model. 

o Visualizing the training set result: 

Now we will visualize the training set result, below is the code for it: 

 

 

 

 

1. from matplotlib.colors import ListedColormap   

2. x_set, y_set = x_train, y_train   

3. x1, x2 = nm.meshgrid(nm.arange(start = x_set[:, 0].min() -

 1, stop = x_set[:, 0].max() + 1, step  =0.01),   

4. nm.arange(start = x_set[:, 1].min() - 1, stop = x_set[:, 1].max() + 1, step = 0.01))   

5. mtp.contourf(x1, x2, classifier.predict(nm.array([x1.ravel(), x2.ravel()]).T).reshape(x1.shape),   

6. alpha = 0.75, cmap = ListedColormap(('red', 'green')))   

7. mtp.xlim(x1.min(), x1.max())   

8. mtp.ylim(x2.min(), x2.max())   

9. for i, j in enumerate(nm.unique(y_set)):   

10.     mtp.scatter(x_set[y_set == j, 0], x_set[y_set == j, 1],   

11.         c = ListedColormap(('red', 'green'))(i), label = j)   

12. mtp.title('SVM classifier (Training set)')   

13. mtp.xlabel('Age')   



14. mtp.ylabel('Estimated Salary')   

15. mtp.legend()   

16. mtp.show()   

Output: 

By executing the above code, we will get the output as: 

 

As we can see, the above output is appearing similar to the Logistic regression output. In the 

output, we got the straight line as hyperplane because we have used a linear kernel in the 

classifier. And we have also discussed above that for the 2d space, the hyperplane in SVM is a 

straight line. 

o Visualizing the test set result: 

 

 

 

 

1. #Visulaizing the test set result   

2. from matplotlib.colors import ListedColormap   

3. x_set, y_set = x_test, y_test   

4. x1, x2 = nm.meshgrid(nm.arange(start = x_set[:, 0].min() -

 1, stop = x_set[:, 0].max() + 1, step  =0.01),   

5. nm.arange(start = x_set[:, 1].min() - 1, stop = x_set[:, 1].max() + 1, step = 0.01))   

6. mtp.contourf(x1, x2, classifier.predict(nm.array([x1.ravel(), x2.ravel()]).T).reshape(x1.shape),   

7. alpha = 0.75, cmap = ListedColormap(('red','green' )))   

8. mtp.xlim(x1.min(), x1.max())   

9. mtp.ylim(x2.min(), x2.max())   



10. for i, j in enumerate(nm.unique(y_set)):   

11.     mtp.scatter(x_set[y_set == j, 0], x_set[y_set == j, 1],   

12.         c = ListedColormap(('red', 'green'))(i), label = j)   

13. mtp.title('SVM classifier (Test set)')   

14. mtp.xlabel('Age')   

15. mtp.ylabel('Estimated Salary')   

16. mtp.legend()   

17. mtp.show()   

Output: 

By executing the above code, we will get the output as: 

 

As we can see in the above output image, the SVM classifier has divided the users into two 

regions (Purchased or Not purchased). Users who purchased the SUV are in the red region with 

the red scatter points. And users who did not purchase the SUV are in the green region with green 

scatter points. The hyperplane has divided the two classes into Purchased and not purchased 

variable. 

3.Random Forest:  

Random Forest is a popular machine learning algorithm that belongs to the supervised learning 

technique. It can be used for both Classification and Regression problems in ML. It is based on 

the concept of ensemble learning, which is a process of combining multiple classifiers to solve a 

complex problem and to improve the performance of the model. 

As the name suggests, "Random Forest is a classifier that contains a number of decision trees 

on various subsets of the given dataset and takes the average to improve the predictive accuracy 

of that dataset." Instead of relying on one decision tree, the random forest takes the prediction 

from each tree and based on the majority votes of predictions, and it predicts the final output. 



The greater number of trees in the forest leads to higher accuracy and prevents the problem 

of overfitting. 

The below diagram explains the working of the Random Forest algorithm: 
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Assumptions for Random Forest 

Since the random forest combines multiple trees to predict the class of the dataset, it is possible 

that some decision trees may predict the correct output, while others may not. But together, all the 

trees predict the correct output. Therefore, below are two assumptions for a better Random forest 

classifier: 

o There should be some actual values in the feature variable of the dataset so that the 

classifier can predict accurate results rather than a guessed result. 

o The predictions from each tree must have very low correlations. 

Why use Random Forest? 

Below are some points that explain why we should use the Random Forest algorithm: 

<="" li=""> 



o It takes less training time as compared to other algorithms. 

o It predicts output with high accuracy, even for the large dataset it runs efficiently. 

o It can also maintain accuracy when a large proportion of data is missing. 

How does Random Forest algorithm work? 

Random Forest works in two-phase first is to create the random forest by combining N decision 

tree, and second is to make predictions for each tree created in the first phase. 

The Working process can be explained in the below steps and diagram: 

Step-1: Select random K data points from the training set. 

Step-2: Build the decision trees associated with the selected data points (Subsets). 

Step-3: Choose the number N for decision trees that you want to build. 

Step-4: Repeat Step 1 & 2. 

Step-5: For new data points, find the predictions of each decision tree, and assign the new data 

points to the category that wins the majority votes. 

The working of the algorithm can be better understood by the below example: 

Example: Suppose there is a dataset that contains multiple fruit images. So, this dataset is given 

to the Random forest classifier. The dataset is divided into subsets and given to each decision tree. 

During the training phase, each decision tree produces a prediction result, and when a new data 

point occurs, then based on the majority of results, the Random Forest classifier predicts the final 

decision. Consider the below image: 



 

Applications of Random Forest 

There are mainly four sectors where Random forest mostly used: 

1. Banking: Banking sector mostly uses this algorithm for the identification of loan risk. 

2. Medicine: With the help of this algorithm, disease trends and risks of the disease can be 

identified. 

3. Land Use: We can identify the areas of similar land use by this algorithm. 

4. Marketing: Marketing trends can be identified using this algorithm. 

Advantages of Random Forest 

o Random Forest is capable of performing both Classification and Regression tasks. 

o It is capable of handling large datasets with high dimensionality. 

o It enhances the accuracy of the model and prevents the overfitting issue. 

Disadvantages of Random Forest 



o Although random forest can be used for both classification and regression tasks, it is not 

more suitable for Regression tasks. 

Python Implementation of Random Forest Algorithm 

Now we will implement the Random Forest Algorithm tree using Python. For this, we will use the 

same dataset "user_data.csv", which we have used in previous classification models. By using the 

same dataset, we can compare the Random Forest classifier with other classification models such 

as Decision tree Classifier, 

 

Implementation Steps are given below: 

o Data Pre-processing step 

o Fitting the Random forest algorithm to the Training set 

o Predicting the test result 

o Test accuracy of the result (Creation of Confusion matrix) 

o Visualizing the test set result. 

1.Data Pre-Processing Step: 

Below is the code for the pre-processing step: 

 

 

 

 

1. # importing libraries   

2. import numpy as nm   

3. import matplotlib.pyplot as mtp   

4. import pandas as pd   

5.    

6. #importing datasets   

7. data_set= pd.read_csv('user_data.csv')   

8.    

9. #Extracting Independent and dependent Variable   

10. x= data_set.iloc[:, [2,3]].values   

11. y= data_set.iloc[:, 4].values   

12.    

13. # Splitting the dataset into training and test set.   



14. from sklearn.model_selection import train_test_split   

15. x_train, x_test, y_train, y_test= train_test_split(x, y, test_size= 0.25, random_state=0)   

16.    

17. #feature Scaling   

18. from sklearn.preprocessing import StandardScaler     

19. st_x= StandardScaler()     

20. x_train= st_x.fit_transform(x_train)     

21. x_test= st_x.transform(x_test)     

In the above code, we have pre-processed the data. Where we have loaded the dataset, which is 

given as: 

 

2. Fitting the Random Forest algorithm to the training set: 

Now we will fit the Random forest algorithm to the training set. To fit it, we will import 

the RandomForestClassifier class from the sklearn.ensemble library. The code is given below: 



 

 

 

 

1. #Fitting Decision Tree classifier to the training set   

2. from sklearn.ensemble import RandomForestClassifier   

3. classifier= RandomForestClassifier(n_estimators= 10, criterion="entropy")   

4. classifier.fit(x_train, y_train)   

In the above code, the classifier object takes below parameters: 

o n_estimators= The required number of trees in the Random Forest. The default value is 

10. We can choose any number but need to take care of the overfitting issue. 

o criterion= It is a function to analyze the accuracy of the split. Here we have taken 

"entropy" for the information gain. 

Output: 

RandomForestClassifier(bootstrap=True, class_weight=None, criterion='entropy', 

                       max_depth=None, max_features='auto', max_leaf_nodes=None, 

                       min_impurity_decrease=0.0, min_impurity_split=None, 

                       min_samples_leaf=1, min_samples_split=2, 

                       min_weight_fraction_leaf=0.0, n_estimators=10, 

                       n_jobs=None, oob_score=False, random_state=None, 

                       verbose=0, warm_start=False) 

3. Predicting the Test Set result 

Since our model is fitted to the training set, so now we can predict the test result. For prediction, 

we will create a new prediction vector y_pred. Below is the code for it: 

 

 

 

 

1. #Predicting the test set result   

2. y_pred= classifier.predict(x_test)   

Output: 

The prediction vector is given as: 



 

By checking the above prediction vector and test set real vector, we can determine the incorrect 

predictions done by the classifier. 

4. Creating the Confusion Matrix 

Now we will create the confusion matrix to determine the correct and incorrect predictions. Below 

is the code for it: 

 

 

 

 

1. #Creating the Confusion matrix   

2. from sklearn.metrics import confusion_matrix   

3. cm= confusion_matrix(y_test, y_pred)   

Output: 



 

As we can see in the above matrix, there are 4+4= 8 incorrect predictions and 64+28= 92 

correct predictions. 

5. Visualizing the training Set result 

Here we will visualize the training set result. To visualize the training set result we will plot a 

graph for the Random forest classifier. The classifier will predict yes or No for the users who have 

either Purchased or Not purchased the SUV car as we did in Logistic Regression. 

Below is the code for it: 

 

 

 

 

1. from matplotlib.colors import ListedColormap   

2. x_set, y_set = x_train, y_train   

3. x1, x2 = nm.meshgrid(nm.arange(start = x_set[:, 0].min() -

 1, stop = x_set[:, 0].max() + 1, step  =0.01),   

4. nm.arange(start = x_set[:, 1].min() - 1, stop = x_set[:, 1].max() + 1, step = 0.01))   

5. mtp.contourf(x1, x2, classifier.predict(nm.array([x1.ravel(), x2.ravel()]).T).reshape(x1.shape),   

6. alpha = 0.75, cmap = ListedColormap(('purple','green' )))   

7. mtp.xlim(x1.min(), x1.max())   

8. mtp.ylim(x2.min(), x2.max())   

9. for i, j in enumerate(nm.unique(y_set)):   

10.     mtp.scatter(x_set[y_set == j, 0], x_set[y_set == j, 1],   

11.         c = ListedColormap(('purple', 'green'))(i), label = j)   



12. mtp.title('Random Forest Algorithm (Training set)')   

13. mtp.xlabel('Age')   

14. mtp.ylabel('Estimated Salary')   

15. mtp.legend()   

16. mtp.show()   

Output: 

 

The above image is the visualization result for the Random Forest classifier working with the 

training set result. It is very much similar to the Decision tree classifier. Each data point 

corresponds to each user of the user_data, and the purple and green regions are the prediction 

regions. The purple region is classified for the users who did not purchase the SUV car, and the 

green region is for the users who purchased the SUV. 

So, in the Random Forest classifier, we have taken 10 trees that have predicted Yes or NO for the 

Purchased variable. The classifier took the majority of the predictions and provided the result. 

6. Visualizing the test set result 

Now we will visualize the test set result. Below is the code for it: 

 

 

 

 

1. #Visulaizing the test set result   

2. from matplotlib.colors import ListedColormap   

3. x_set, y_set = x_test, y_test   

4. x1, x2 = nm.meshgrid(nm.arange(start = x_set[:, 0].min() -

 1, stop = x_set[:, 0].max() + 1, step  =0.01),   



5. nm.arange(start = x_set[:, 1].min() - 1, stop = x_set[:, 1].max() + 1, step = 0.01))   

6. mtp.contourf(x1, x2, classifier.predict(nm.array([x1.ravel(), x2.ravel()]).T).reshape(x1.shape),   

7. alpha = 0.75, cmap = ListedColormap(('purple','green' )))   

8. mtp.xlim(x1.min(), x1.max())   

9. mtp.ylim(x2.min(), x2.max())   

10. for i, j in enumerate(nm.unique(y_set)):   

11.     mtp.scatter(x_set[y_set == j, 0], x_set[y_set == j, 1],   

12.         c = ListedColormap(('purple', 'green'))(i), label = j)   

13. mtp.title('Random Forest Algorithm(Test set)')   

14. mtp.xlabel('Age')   

15. mtp.ylabel('Estimated Salary')   

16. mtp.legend()   

17. mtp.show()   

Output: 

 

The above image is the visualization result for the test set. We can check that there is a minimum 

number of incorrect predictions (8) without the Overfitting issue. We will get different results by 

changing the number of trees in the classifier. 

Performance Metrics for Classification Machine Learning Problems: 

Many learning algorithms have been proposed. It is often valuable to assess the efficacy of an 

algorithm. In many cases, such assessment is relative, that is, evaluating which of several 

alternative algorithms is best suited to a specific application. 



People even end up creating metrics that suit the application. In this article, we will see some of the 

most common metrics in a classification setting of a problem. 

The most commonly used Performance metrics for classification problem are as follows, 

 Accuracy 

 Confusion Matrix 

 Precision, Recall, and F1 score 

 ROC AUC 

 Log-loss 

Accuracy 

Accuracy is the simple ratio between the number of correctly classified points to the total number 

of points. 

To calculate accuracy, scikit-learn provides a utility function. 

from sklearn.metrics import accuracy_score#predicted y values 

y_pred = [0, 2, 1, 3]#actual y values 

y_true = [0, 1, 2, 3]accuracy_score(y_true, y_pred) 

0.5 

Accuracy is simple to calculate but has its own disadvantages. 

Limitations of accuracy 

 If the data set is highly imbalanced, and the model classifies all the data points as the majority 

class data points, the accuracy will be high. This makes accuracy not a reliable performance 

metric for imbalanced data. 



 From accuracy, the probability of the predictions of the model can be derived. So from 

accuracy, we can not measure how good the predictions of the model are. 

Confusion Matrix 

Confusion Matrix is a summary of predicted results in specific table layout that allows 

visualization of the performance measure of the machine learning model for a binary classification 

problem (2 classes) or multi-class classification problem (more than 2 classes) 

 

Confusion matrix of a binary classification 

 TP means True Positive. It can be interpreted as the model predicted positive class and it is 

True. 

 FP means False Positive. It can be interpreted as the model predicted positive class but it is 

False. 



 FN means False Negative. It can be interpreted as the model predicted negative class but it is 

False. 

 TN means True Negative. It can be interpreted as the model predicted negative class and it is 

True. 

For a sensible model, the principal diagonal element values will be high and the off-diagonal 

element values will be below i.e., TP, TN will be high. 

To get an appropriate example in a real-world problem, consider a diagnostic test that seeks to 

determine whether a person has a certain disease. A false positive in this case occurs when the 

person tests positive but does not actually have the disease. A false negative, on the other hand, 

occurs when the person tests negative, suggesting they are healthy when they actually do have the 

disease. 

For a multi-class classification problem, with „c‟ class labels, the confusion matrix will be a (c*c) 

matrix. 

To calculate confusion matrix, sklearn provides a utility function 

from sklearn.metrics import confusion_matrix 

y_true = [2, 0, 2, 2, 0, 1] 

y_pred = [0, 0, 2, 2, 0, 2] 

confusion_matrix(y_true, y_pred) 

array([[2, 0, 0], 

       [0, 0, 1], 

       [1, 0, 2]]) 

Advantages of a confusion matrix: 

 The confusion matrix provides detailed results of the classification. 

 Derivates of the confusion matrix are widely used. 

 Visual inspection of results can be enhanced by using a heat map. 



Precision, Recall, and F-1 Score 

Precision is the fraction of the correctly classified instances from the total classified 

instances. Recall is the fraction of the correctly classified instances from the total classified 

instances. Precision and recall are given as follows, 

Mathematical formula of 

Precision and Recall using the confusion matrix 

For example, consider that a search query results in 30 pages, out of which 20 are relevant. And the 

results fail to display 40 other relevant results. So the precision is 20/30 and recall is 20/60. 

Precision helps us understand how useful the results are. Recall helps us understand how complete 

the results are. 

But to reduce the checking of pockets twice, the F1 score is used. F1 score is the harmonic mean of 

precision and recall. It is given as, 

 

When to use the F1 Score? 

 The F-score is often used in the field of information retrieval for measuring search, document 

classification, and query classification performance. 



 The F-score has been widely used in the natural language processing literature, such as the 

evaluation of named entity recognition and word segmentation. 

Log Loss 

Logarithmic loss (or log loss) measures the performance of a classification model where the 

prediction is a probability value between 0 and 1. Log loss increases as the predicted probability 

diverge from the actual label. Log loss is a widely used metric for Kaggle competitions. 

 

Here ‟N‟ is the total number of data points in the data set, yi is the actual value of y and pi is the 

probability of y belonging to the positive class. 

Lower the log-loss value, better are the predictions of the model. 

To calculate log-loss, scikit-learn provides a utility function. 

from sklearn.metrics import log_losslog_loss(y_true, y_pred) 

ROC AUC 

A Receiver Operating Characteristic curve or ROC curve is created by plotting the True 

Positive (TP) against the False Positive (FP) at various threshold settings. The ROC curve is 

generated by plotting the cumulative distribution function of the True Positive in the y-axis versus 

the cumulative distribution function of the False Positive on the x-axis. 



 

The dashed curved line is the ROC Curve 

The area under the ROC curve (ROC AUC) is the single-valued metric used for evaluating the 

performance. 

The higher the AUC, the better the performance of the model at distinguishing between the classes. 

In general, an AUC of 0.5 suggests no discrimination, a value between 0.5–0.7 is acceptable and 

anything above 0.7 is good-to-go-model. However, medical diagnosis models, usually AUC of 

0.95 or more is considered to be good-to-go-model. 

When to use ROC? 

 ROC curves are widely used to compare and evaluate different classification algorithms. 

 ROC curve is widely used when the dataset is imbalanced. 

 ROC curves are also used in verification of forecasts in meteorology 

                                                  Ensemble methods 
 

Ensemble methods are techniques that aim at improving the accuracy of results in models by 

combining multiple models instead of using a single model. The combined models increase the 

accuracy of the results significantly. This has boosted the popularity of ensemble methods in 

machine learning. 



The three main classes of ensemble learning methods are bagging, stacking, and boosting, and it 

is important to both have a detailed understanding of each method and to consider them on your 

predictive modeling project. 

Bagging: 

Bagging, also known as Bootstrap aggregating, is an ensemble learning technique that helps to 

improve the performance and accuracy of machine learning algorithms. It is used to deal 

with bias-variance trade-offs and reduces the variance of a prediction model. 

A Bagging classifier is an ensemble meta-estimator that fits base classifiers each on random 

subsets of the original dataset and then aggregate their individual predictions (either by voting 

or by averaging) to form a final prediction. Such a meta-estimator can typically be used as a 

way to reduce the variance of a black-box estimator (e.g., a decision tree), by introducing 

randomization into its construction procedure and then making an ensemble out of it. 

Each base classifier is trained in parallel with a training set which is generated by randomly 

drawing, with replacement, N examples(or data) from the original training dataset – where N is 

the size of the original training set. Training set for each of the base classifiers is independent of 

each other. Many of the original data may be repeated in the resulting training set while others 

may be left out. 

Bagging reduces overfitting (variance) by averaging or voting, however, this leads to an 

increase in bias, which is compensated by the reduction in variance though.  

How Bagging works on training dataset ? 
How bagging works on an imaginary training dataset is shown below. Since Bagging resamples 

the original training dataset with replacement, some instance(or data) may be present multiple 

times while others are left out. 

Original training dataset: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 

Resampled training set 1: 2, 3, 3, 5, 6, 1, 8, 10, 9, 1 

Resampled training set 2: 1, 1, 5, 6, 3, 8, 9, 10, 2, 7 

Resampled training set 3: 1, 5, 8, 9, 2, 10, 9, 7, 5, 4 

Algorithm for the Bagging classifier: 

Classifier generation: 
 

Let N be the size of the training set. 

for each of t iterations: 

    sample N instances with replacement from the original training set. 

    apply the learning algorithm to the sample. 

    store the resulting classifier. 

 

Classification: 
for each of the t classifiers: 

    predict class of instance using classifier. 

return class that was predicted most often. 



 

 
BOOSTING: 

Boosting is an ensemble modeling technique that attempts to build a strong classifier from the 

number of weak classifiers. It is done by building a model by using weak models in series. 

Firstly, a model is built from the training data. Then the second model is built which tries to 

correct the errors present in the first model. This procedure is continued and models are added 

until either the complete training data set is predicted correctly or the maximum number of 

models are added.  

AdaBoost :It is  the first really successful boosting algorithm developed for the purpose of 

binary classification. AdaBoost is short for Adaptive Boosting and is a very popular boosting 

technique that combines multiple “weak classifiers” into a single “strong classifier”. It was 

formulated by Yoav Freund and Robert Schapire. They also won the 2003 Gödel Prize for their 

work.  

Algorithm:  

  

1. Initialise the dataset and assign equal weight to each of the data point. 

2. Provide this as input to the model and identify the wrongly classified data points. 

3. Increase the weight of the wrongly classified data points. 

4. if (got required results)  

  Goto step 5  

else  

  Goto step 2  

  

5. End 



 



Explanation:  

The above diagram explains the AdaBoost algorithm in a very simple way. Let‟s try to 

understand it in a stepwise process:  

 B1 consists of 10 data points which consist of two types namely plus(+) and minus(-) and 5 

of which are plus(+) and the other 5 are minus(-) and each one has been assigned equal 

weight initially. The first model tries to classify the data points and generates a vertical 

separator line but it wrongly classifies 3 plus(+) as minus(-). 

 B2 consists of the 10 data points from the previous model in which the 3 wrongly classified 

plus(+) are weighted more so that the current model tries more to classify these pluses(+) 

correctly. This model generates a vertical separator line that correctly classifies the 

previously wrongly classified pluses(+) but in this attempt, it wrongly classifies three 

minuses(-). 

 B3 consists of the 10 data points from the previous model in which the 3 wrongly classified 

minus(-) are weighted more so that the current model tries more to classify these minuses(-) 

correctly. This model generates a horizontal separator line that correctly classifies the 

previously wrongly classified minuses(-). 

 B4 combines together B1, B2, and B3 in order to build a strong prediction model which is 

much better than any individual model used. 

 

 

 

XG Boost: is an implementation of Gradient Boosted decision trees. This library 
was written in C++. It is a type of Software library that was designed basically to 
improve speed and model performance. It has recently been dominating in 
applied machine learning. XGBoost models majorly dominate in many Kaggle 
Competitions. In this algorithm, decision trees are created in sequential form. 
Weights play an important role in XGBoost. Weights are assigned to all the 
independent variables which are then fed into the decision tree which predicts 
results. The weight of variables predicted wrong by the tree is increased and the 
variables are then fed to the second decision tree. These individual 
classifiers/predictors then ensemble to give a strong and more precise model. It 
can work on regression, classification, ranking, and user-defined prediction 
problems. 

 



XGBoost Features The library is laser-focused on computational speed and 
model performance, as such, there are few frills. Model Features Three main 
forms of gradient boosting are supported: 
 Gradient Boosting 
 Stochastic Gradient Boosting 
 Regularized Gradient Boosting 
System Features 
 For use of a range of computing environments this library provides- 
 Parallelization of tree construction 
 Distributed Computing for training very large models 
 Cache Optimization of data structures and algorithm 
XGBoost enhancements/optimizations 
XGBoost features various optimizations built-in to make the training faster when 
working with large datasets, in addition to its unique method of generating and 
pruning trees. Here is a handful of the most significant: 

 Approximate Greedy Algorithm: instead of assessing every candidate split, 
this algorithm employs weighted quantiles to find the best node split. 

 Cash-Aware Access: XGBoost stores data in the CPU’s cache memory. 
 Sparsity: Aware Split Finding calculates Gain by putting observations with 

missing values onto the left leaf when there is some missing data. It then 
repeats the process by placing them in the appropriate leaf and selecting the 
scenario with the highest Gain. 

Steps to Install Windows XGBoost uses Git submodules to manage 
dependencies. So when you clone the repo, remember to specify –recursive 
option: 
git clone --recursive https://github.com/dmlc/xgboost 

For Windows users who use Github tools, you can open the git-shell and type 
the following command: 

git submodule init 
git submodule update 

OSX(Mac) First, obtain gcc-8 with Homebrew (https://brew.sh/) to enable multi-
threading (i.e. using multiple CPU threads for training). The default Apple Clang 
compiler does not support OpenMP, so using the default compiler would have 
disabled multi-threading. 
brew install gcc@8 

Then install XGBoost with pip: 

pip3 install xgboost 

You might need to run the command with –user flag if you run into permission 
errors.  
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